JS Engine Security in 2025

New Bugs, New Defenses

Samuel Grof3, Google Project Zero

l POWER OF COMMUNITY

CVE-2019-17026: Zero-Day Vulnerability in Mozilla
Firefox Exploited in Targeted Attacks

Security

Google patches type confusion zero-day

in Chrome's V8 engine

The bug was discovered by its government-

The Million Dollar Dissident

NSO Group’s iPhone Zero-Days used against a UAE

Human Rights Defender

By Bill Marczak and John Scott Raiton Augus 24, 2015 Responding to Firefox 0-daysin the
wild

By Philip Martin Corporate, August 8, 2019, 7 min read time

Google Patches Chrome Zero-Day CVE-2025-10585 as Active V8
Exploit Threatens Millions

9 Sep 18,2025 & Ravie Lakshmanan Vulnerability / Browser Security

Qutline

1. Why JavaScript engine’s are hard to secure
2. Brief history of JavaScript engine exploitation
3. Overview of current and future defenses

4. JS engine vulnerability research in 2025

“Classic” Memory Safety Bugs

int array[100];
int get(int i) {
if (i >= 100) return 0;

return array[i];

“Classic” Memory Safety Bugs

int array[100];
int get(int i) {
if (i >= 100) return 0;

return array[i];

“Classic” Memory Safety Bugs - Compiler Mitigation

int array[100];

int get(int i) {
if (i >= 100) return 0;
__bounds_check__(size_t{i}, 100);

return array[i];

| v/

“Classic” Memory Safety Bugs - Compiler Mitigation

int array[100];
int get(size_t i) {
if (i >= 100) return 9;

return array[i];

“Classic” Memory Safety Bugs - Compiler Mitigation

int array[100];

int get(size_t i) {
if (i >= 100) return 0;
__bounds_check__(size_t{i}, 100);

return array[i];

“Classic” Memory Safety Bugs - Compiler Mitigation

int array[100];
int get(size_t i) {
if (i >= 100) return 0;

_— - _ -))

return array[i];

Redundant bounds-check will be removed by compiler
during code optimization = Low overhead ;

JavaScript Engine Bug

let array = new Array(100);
function get(i, m) {
if (1 <0 ||
i >= array.length) return;
return Number(m) * arrayl[i];

JavaScript Engine Bug

let a = new Array(100);
function get(i, m) {
if (i<0 ||
i >= array.length) return;
return Number(m) * array[i];

JavaScript Engine Bug

let a = new Array(100);
function get(i, m) {
if (i <0 ||
i >= array.length) return;
return Number(m) * array[i];

FUNC get(i, m):
SPECULATE typeof(i) == Smi
IF i < @ RETURN
IF i >= array.length RETURN
M = ToNumber(m)
__bounds_check__(i, array.length)
A = array[i]
RETURN M * A

JavaScript Engine Bug

let a =

new Array(1600);

function get(i, m) {
if (i <9 ||

i >= array.length) return;

return Number(m) * array[i];

FUNC

IF
IF
M

A

get(i, m):

SPECULATE typeof(i) == Smi

i < @ RETURN
i >= array.length RETURN
ToNumber (m)

-— —— I]

array[i]

RETURN M * A

FUNC get(i, m):
SPECULATE typeof(i) == Smi
IF i < @ RETURN
IF i >= array.length RETURN
M = ToNumber(m)
__bounds_check__(i, array.length)
A = array[i]
RETURN M * A

JavaScript Engine Bug

let a = new Array(100);
function get(i, m) {
if (i <9 ||
i >= array.length) return;
return Number(m) * array[i];

FUNC get(i, m):
SPECULATE typeof(i) == Smi
IF 1 < @ RETURN
IF i >= array.length RETURN
M = ToNumber(m)
A = array[i]
RETURN M * A

FUNC get(i, m):
SPECULATE typeof(i) == Smi
IF i < @ RETURN
IF i >= array.length RETURN
M = ToNumber(m)
__bounds_check__(i, array.length)
A = array[i]
RETURN M * A

JavaScript Engine Bug

let array = new Array(100);
function get(i, m) {
if (1 <0 ||
i >= array.length) return;
return Number(m) * array[i];
}

let evil = { valueOf() { array.length = 0; } };
get(42, evil);

JavaScript Engine Bug

FUNC get(i, m):

SPECULATE typeof(i) == Smi

IF 1 < @ RETURN

IF i >= array.length RETURN

M = ToNumber(m)
———bounds—eheek—{i—array—tergth)

A = array[i]

RETURN M * A

Redundant bounds-check will be removed by compiler
during code optimization...

Except that it's not redundant in this case @2

Why JavaScript Engine Security is hard

“Typical” Application

Attacker controlled
Attack Surface

Memory safety (can be) guaranteed here

Why JavaScript Engine Security is hard

“Typical” Application JavaScript Engine

Why JavaScript Engine Security is hard

JavaScript Engine

Attacker controlled —

This is direct attack surface
=> Cannot guarantee memory safety here

Brief History of JS Engine Security

V8 Architecture

JavaScript JavaScript
Interpreter Baseline JIT
(Ignition) (Sparkplug)
JavaScript Y - /’
Parser T ~a
a4 /
a N g
function foo() { !
. Runti
doX() ; p untime 2, -
doY () ; Garbage Environment
Collectors
(func Sfoo
call SdoX
WebAssembly
call Sdo¥ Validator WebAssembly
Baseline JIT
(Liftoff)

JavaScript
Mid-tier JIT

(Maglev)

Optimizing JIT
(Turboshaft)

Brief History of JS Engine Bugs (Subjective)

e Phase 1(<=~2017): “Classic” runtime bugs

o Bugs mostly in the runtime and builtin functions

o Fairly local and somewhat shallow bugs
e Phase 2 (>=~2017): Optimization bugs

o Bugs deeper in the execution pipeline (e.g. JIT)

o Some of the most complex bugs in software security?
e Phase 3 (>=~2023): Wasm enters the picture

o Major leap in complexity with WasmGC proposal

o Brought complexity close to that of the JS pipeline
e Today: Mostly a mix of 2 and 3 (for the major engines)

Phase 1: Runtime Bugs

e By now “classic” JS engine bugs
e Typically bug pattern: unexpected
callback in runtime functions which

violates previous assumptions
o But also: integer overflows, etc.

e Bugs often local to a single function
e Have mostly disappeared by now in the

major JS engines

JavaScrlpt
Parser

Garbage
Collectors

JavaScript
Interpreter
(Ignition)

JavaScript
Baseline JIT
(Sparkplug)

JavaScript
Mid-tier JIT
(Maglev)

Optimizing JIT
(Turboshaft)

~
N

WebAssembly
Validator

WebAssembly
Baseline JIT
(Liftoff)

var a = [];
for (var i = 0; i < 100; i++) {
a.push(i + 0.123);
}
var evil = {
valueOf: function() {
a.length = 0;
return 10;

}

b
var b = a.slice(9, evil);

Phase 2: Optimization Bugs

e Started with fairly simple (in

retrospect!) JIT bugs

o E.g.invalid bounds-check elimination WebAssembly

Baseline JIT
(Liftoff)

WebAssembly
Validator

e (Gradually became more and more
complex, frequently involving multiple

components of the engine .] _
Exploiting the Math.expml typing bug in V8

e Also more recently: bugs in the parser! B s

Minus zero behaves like zero, right?

Analysis

Optimization _(Register

Allocation T
CVE-2018-12386
Other CVE-2019-8623 SRR
CVE-2019-8518 _ -
“Breaks” 7 -
—-- - LICM -="
/ =~ - . . —_——-— -
/ (Ioop-lnva'rlant code \
/ motion) 7 \
/7
! , \
; T GVN _--7 \
Type‘CheCk (global value numbering) BCE 1
Elimination CVE-2019-9810 < (bounds-check \ 1
CVE-2019-17026 - Simation) 1
A p _ - CVE-2017-2547 Array Length | |
\ L Analysis — \\ Computation | |
\ I
N { Type CSE | 4 !
Inference RE , 7| (commonsubexpression | Range _-7 |
CVE-2018-4233 / Analvsis I
CVE-2018-17463 State ! y 1
CVE-2019-11707 CVE-2019-8506 I A crbug 762874 (2017) !
CVE-2020-6418 CVE-2021-30551 b N / \ crbug 880207 (2018) /
VE-2021-30632 Analysis ’ N /
CVE-2022-3723 /s
7 CVE-2020-9802 Pattern - N)
I Matching) /
s Vs
: : CVE-2021-30598
Write Barrier 2021- . 7
B CVE-2021-30599 Lowering -
Elision S GC W
Modelling

CVE-2021-21220 J

crbug 1377775 (2022)
CVE 20194472 crbug 1377775 (2022
CVE-2019-8622

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/chromium/issues/detail?id=1377775
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

(See “Attacking JavaScript
Engines in 2022” by
@itszn13 and myself)

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/chromium/issues/detail?id=1377775
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Phase 3: Wasm Bugs

e Wasm first generally available in ~2017
e BUT: that was “linear memory” Wasm:

o Simple instruction set (basically loads+stores,
arithmetic, logic operations, jumps, calls)

o No object model, only linear memory range (in
which memory corruption didn't matter)

o Mostly only allowed compiling C/C++ to Wasm

e Then~2023 WasmGC shipped

o Majorleap in complexity

o Added powerful and highly complex object
model + type system + garbage collection

o = Major source of new vulnerabilities

JavaScript
Parser

JavaScript
Interpreter
(Ignition)

JavaScript
Baseline JIT
(Sparkplug)

JavaScript
Mid-tier JIT
(Maglev)

Runtime

Garbage Environment

Collectors

A new way to bring garbage collected
programming languages efficiently to
WebAssembly

Published 01 November 2023 - Tagged with WebAssembly

WasmGC Bug Example (e.g. 339736513)

HeapObiject

/] ...
if (!IsJSReceiver(obj))
return false;
if (IsJSProxy(obj))
return false
Cast<JSObject>(obj)->Foo();

https://crbug.com/339736513

WasmGC Bug Example (e.g. 339736513)

HeapObiject

/] ...

if (!IsJSReceiver(obj))
return false;

if (IsJSProxy(obj))
return false

Cast<JSObject>(obj)->Foo();

https://crbug.com/339736513

Current and Future Defenses

Going Jitless?

Going Jitless?

e |dea: disable compilers

e Obvious attack surface
reduction (always good!)

e |n addition: may allow
enabling additional
mitigations (mostly W"X)

e But: potentially dramatic
performance penalty
(anything from 5%-90%)

JavaScript
Interpreter
(Ignition)

JavaScript
Parser
Garbage
Collectors
WebAssembly
Validator

Runtime
Environment

Going Jitless? What about Wasm (in V8)?

e Problem: Wasm doesn’t

JavaScript
Interpreter
(Ignition)

need/use an interpreter

e Options:

JavaScript
Parser

Garbage
Collectors

o AddaWasm interpreter

= new attack surface :/

Runtime
Environment

(unless written in memory-safe language?)

o Disable Wasm :/

Going Jitless? What about Wasm (in V8)?

e Problem: Wasm doesn’t

need/use an interpreter

JavaScript
Interpreter
(Ignition)

JavaScript
Baseline JIT
(Sparkplug)

e Options:

~

Runtime
Environment

\

JavaScript
Parser

Garbage
Collectors

o AddaWasm interpreter

= new attack surface :/

(unless written in memory-safe language?)

o Disable Wasm :/

o Keep Baseline Wasm JIT :|

WebAssembly
Validator

e Hypothesis: just disabling

WebAssembly
Baseline JIT
(Liftoff)

optimizing JITs is sufficient

Going Jitless? The Data!

e Tracking sheet for V8
bugs that are known to
be exploitable

e Sources: ITW, exploit
competitions, VBCTF

e Seems to confirm:

o JITs account for ~50% of
exploitable vulnerabilities
o Baseline JITs are rarely the

source of vulnerabilities

Issue

First
Exploited

Description

386565144

V8CTF

Incorrect
optimization in
Maglev

391907159

V8CTF

Wasm JIT
allocation UaF

398065918

V8CTF

Improper allocation
folding in Maglev

400052777

V8CTF

Incorrect handling
of aliases during
ElementsKind
transitions

403364367

V8CTF

Invalid handling of
Wasm stack frames
during stack
walking

420636529

IT™wW

Logic error in
store-store
elimination

422313191

TyphoonPWN

Invalid
WebAssembly type
canonicalization

427663123

IT™W

Invalid hole check
elision in interpreter

433533359

V8CTF

Concurrent
modification of
Wasm code

430344952

V8CTF

Divergence
between preparser
and parser

436181695

V8CTF

Invalid parsing of
‘await using’ in
c-style loops

445380761

Invalid integer
optimization on
Arm64

Exploit
requires V8
Sandbox
Bypass

Exploit
requires
optimizing
JITs (Turbofan
& Maglev)

Exploit
requires any
JITs (Liftoff,
Sparkplug,
Maglev &
Turbofan)

Variant

JavaScriptor | Introduced by | Introduced in

WebAssembly

JavaScript Performance 2024
Work

WebAssembly | Performance 2024
Work

JavaScript Performance 2024
Work

JavaScript Performance 2024
Work

Both Feature Work | 2020

JavaScript Performance 2024
Work

WebAssembly | Performance 2025
Work

JavaScript Performance | 2023
Work

N/A Feature Work | 2018 (?)

JavaScript Performance 2016 (?)
Work

JavaScript Feature Work | 2025

JavaScript Performance 2016
Work

https://docs.google.com/document/d/1njn2dd5_6PB7oZGTmkmoihYnVcJEgRwEFxhHnGoptLk/edit?usp=sharing
https://github.com/google/security-research/blob/master/v8ctf/rules.md

Going Jitless?

Worth emphasizing:

50% fewer bugs != 50% fewer exploits

= Jitless isn't the solution (but can still be a useful tool!)

Memory Tagging Extension (MTE)

Memory Tagging Extension (MTE)

Memory Tag

e Hardware feature for memory safety (Lock)

enforcement Ad‘}rlzfy)“g
e Basicidea: add tag to pointers and O—m 0x9000

0x07 ..9010

memory, enforce that they match

e Can mitigate a number of bug types, e.g.

0x04 ...8028

o Linear OOB accesses
O

\
o Use-after-Free " oo ;(//

0x8000

e See ARM’s documentation, Project Zero’s

analysis, or Apple’s blog post for details n—-

https://developer.arm.com/documentation/108035/0100/How-does-MTE-work-

https://developer.arm.com/documentation/108035/0100/Introduction-to-the-Memory-Tagging-Extension
https://googleprojectzero.blogspot.com/2023/08/mte-as-implemented-part-1.html
https://googleprojectzero.blogspot.com/2023/08/mte-as-implemented-part-1.html
https://security.apple.com/blog/memory-integrity-enforcement/
https://developer.arm.com/documentation/108035/0100/How-does-MTE-work-

Memory Tagging Extension (MTE)

e Unlikely to have much impactin

JavaScript engines
o (But most likely elsewhere!)
e Typical bugs there are too powerful:
o Arbitrary OOB reads+writes

o Arbitrary type confusions

e Also, custom pointer encodings
leave no space for MTE tags...
e Apple seems to have cometoa

similar conclusion

Memory Integrity Enforcement vs. real-world exploit chains

Messages chain 1
Messages chain 2

Messages chain 3

O->0>0>024->0->0->06
O->20->2020->20->0->0
9-0-°0->0-20->0->0->4

A>050-5050505454

Kernel LPE 1

Kernel LPE 2

O->20-B8-oB->A->A-0-B
D->2>0->20->20->060->0->0->06

. Blocked by secure allocators A Surviving step

€ Blocked by EMTE

@ Logical step

@ Blocked by secure allocators and EMTE

https://security.apple.com/blog/memory-integrity-enforcement/

https://security.apple.com/blog/memory-integrity-enforcement/

Sandboxing

A different approach...

|dea:

e Accept that bugs will happen
and that memory will be
corrupted Can corrupt <
e Limit which memory can be memory here
corrupted
e Make that a security boundary

=> Result: an in-process sandbox

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

HeapObj1

HeapObj2

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

HeapObj1

HeapObj2

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

HeapObj1

HeapObj2

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

HeapObj1

HeapObj2

External

Object

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

HeapObj2

HeapObj1

Higher

Addresses
Oxa48000000000
Oxa38000000000
External
Object
J Lower
Addresses

HeapObj1

HeapObj2

* External Ptr Table

A) External
O [T + Point .
ype ointer o et

1 | Type + Pointer

Higher
Addresses

0xa48000000000

0xa38000000000

Lower
Addresses

Bas:cally: bap alf ray, Pojp terg

0xa48000000000

HeapObj1
HeapObj3
HeapObj2
Oxa38000000000
External Ptr Table T . Dispatch Table
. : Trusted Ptr Table “A
Al o Type + Pointer " 0 | Sig + Pointer
A 0 | Type + Pointer
1 | Type + Pointer 1 | Sig + Pointer
1 Type + Pointer
V8 Code Space
: V8 Trusted Space
i Code P Bytecode
: Metadata
HE /5 ! —» Pointer
i Blink Heap ! - = = » Offset
: Blink Object [(U » Index

Sandbox with Hardware Support?

e In the future, should be possible

to “drop privileges” when Pointer Privileged
Table Object

executing JS or Wasm code

e Would be very similar to CPU cannot access
. privileged memory
userspace/kernel split when running in

“sandboxed mode” Sandboxed
e Built on top of current Object

software-only sandbox
e |deally: want to be able to run

untrusted machine code

V8 Sandbox v2.0 - Basic Idea

Privileged Code

e Can read+write all memory

e Must be careful... (or memory safe)

Sandboxed Code

e Can only write inside the sandbox

e Ideally, bugs here don't matter

Privileged vs. Sandboxed Code

RegExp
Binding Code Builtins and runtime Interpreter

functions Inline

Caches

Garbage

Collector

All JIT-generated
Code

Compiler JS Interpreter

V8 Sandbox - “Progress Bar”

e Probably at ~v0.95 of the sandbox (software only)
e Most design-level issues taken care of, but implementation issues remain
e Already integrated into VRP = up to $20k for high-quality bypasses

e Have a prototype for hardware sandboxing based on Intel PKEYs

o But PKEYs are fairly limited, ARM’s upcoming POEZ2 is much more powerful!

Slightly annoying to bypass Actually hard to bypass Secure V8

/ N N\

Sandbox v1.0

_—

Sandbox v2.0

https://docs.google.com/document/d/1l3urJdk1M3JCLpT9HDvFQKOxuKxwINcXoYoFuKkfKcc/edit?usp=sharing
https://developer.arm.com/community/arm-community-blogs/b/architectures-and-processors-blog/posts/future-architecture-technologies-poe2-and-vmte

JavaScript Engine with Sandbox

Software-based Sandbox Hardware-based Sandbox

WebKit's JITCage = SYN

e Similar idea: sandbox untrusted code Attacking Safari in 2022

e Requires special hardware features I I'I E)(ACO’] I

e Different goal: prevents JIT-generated

code from executing certain instructions

(e.g. syscalls) or performing unsafe JITCage ¢

ue
= The following instructions can’t be executed in the JITCage

.o e . . = RET
e Similar hardware capabilities available ir & BR/BLR/BL

= SVC

ARM'’s upcoming POE2 & - MRS/MSR

control-flow transfers

The Future of Sandboxing?

JITCaqe Software Hardware
g Sandbox Sandbox

Applicable To

Restricts Accessible Memory

Restricts Instruction Set

Restricts Control-Flow

* Requires additional code validation (think: NaCL) for actual security guarantees

https://en.wikipedia.org/wiki/Google_Native_Client

Sandboxing - Summary

e Sandbox is a useful mitigation in itself
o Attackers already now need multiple bugs (or one really good one) to exploit V8
e Butit's also an architecture that enables powerful mitigations:

o Memory-safe languages, hardened C++, and/or MTE for privileged code

o Hardware sandboxing or code validation in software for sandboxed code

e => Plausible path towards a secure, high-performance JS engine

JS/Wasm features Research

The V8 Sandbox

Published 04 April 2024 - Tagged with security

After almost three years since the initial design document and hundreds of CLs in the meantime, the V8

Sandbox — a lightweight, in-process sandbox for V8 — has now progressed to the point where it is no

JS Vulnerability Research in 2025

Finding JS Engine Bugs in 2025

e The classics approaches are still going strong

e Manual code auditing

o Time consuming, significant ramp-up work required

o But allows searching for high-quality vulnerabilities

o See e.g. some of the awesome bug reports by
Seunghyun Lee (@0x10n)

e Fuzzing
o Can find really cool bugs, also less cool ones
o Targeted fuzzing for e.g. variants or against specific

components is still promising

https://issues.chromium.org/issues?q=reporter:seunghyun3288@gmail.com

.y .) Bugs found so far this
Finding JS Engine Bugs in 2025 year by Big Sleep in V8

e But there are also new approaches: /

Q_ componentid:1836411 title:vV8 -
e Al-powered vulnerability research .
o In particular Google’s Big Sleep system e AeSIONEE T s T B T
High impact issue in V8 Assigned 457989902
o Combine latest Al reasoning models with High mpact issue in V3 Rosgned] 452319320
purpose_bu”t tOO|S (Code browser and High impact issue in V8 Assigned 450458037
High impact issue in V8 Assigned 449910706

debugger tool) and environment (JS shell)

Medium impact issue in V8 Fixed 444189152

O Able ‘to ﬁnd bugs that fuzzers Cannot (Or at High impact issue in V8: Integer truncation dur... Fixed 444141029

. High impact issue in V8: Bytecode corruption ... Fixed 443875388
least struggle a lot with)
Low impact issue in V8 Fixed 440296017
Medium impact issue in V8: ArrayBuffer Use-a... Fixed 439771269

High impact issue in V8: race condition during ... Fixed 439521654

High impact issue in V8: Bytecode corruption ... Fixed 436210783

https://issuetracker.google.com/issues?g=componentid: 18364 11%20title:V8

https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html
https://issuetracker.google.com/issues?q=componentid:1836411%20title:V8

Issue 436181695 (Google Big Sleep)

e Bug in bytecode compiler
e Mismatch in number of yield points between parser and compiler

e [|eads tojump into the middle of bytecode
o Highly exploitable and also bypasses the (current) sandbox
e Relatively easy to discover but fuzzers had no chance

o They weren't yet aware of new syntax...

async function* bug() {
for (await using x = { [Symbol.asyncDispose]() {} }; 1;) {}
}
async function run() {
for await (const x of bug()) {}
}

run() ;

https://crbug.com/436181695

Issue 443765373 (Google Big Sleep)

e Exception handler is encoded
as offset in bytecode

e Offsetis stored as 28 bit
integer (256 MB)

e Max. bytecode size: 512 MB

e =>Huge bytecode array will
cause truncation of offset

e => Again arbitrary bytecode

execution

function simple() ¢
try {
throw 42;
} catch (e) {
return e;
}
}

[generated bytecode for
0x2ad5001000e4
0x2ad5001000e7
0x2ad5001000e9
0x2ad5001000ea
0x2ad5001000eb
Ox2ad5001000ee

0x2ad5001000f7

function: simple]

® ® ® ® ® ®

@

Handler Table (size = 16)
from to hdlr (prediction,
(3, 6) -> 6 (prediction=1, data=0)

0

O N O oW

1

19

:1b ff

: 0d 2a
. b5
o dl
: 8d f8
: d2

;b7

f9 Mov <context>, r©
LdaSmi [42]
Throw
Star1

00 CreateCatchContext r1,

Return

data)

(6]

https://crbug.com/443765373

Issue 382005099 (V8 Team)

e Bad interaction between WebAudio and JavaScript engine

e WebAudio supports custom audio processing nodes defined in JS

e For performance reasons, WebAudio changes CPU’s handling of floats
e = JavaScript code runs in unexpected CPU mode

e = Turns out this is exploitable

o Affected multiple browsers (e.g. also CVE-2025-24213 in Safari)

e Quite possibly my favorite bug of the last few years :)

https://crbug.com/382005099
https://support.apple.com/en-mide/122405

Background: Denormal Floats

e Floating point number: 1 sign bit, X mantissa bits, Y exponent bits

o Finalvalue: (-1)**sign * (l+mantissa) * 2*x*(exponent-bias)

e Normal float numbers: no leading zero bits in mantissa

e Denormal float number: leading zero bits in mantissa

e For better performance: CPU can disable denormals = they become zero

e BUT: JavaScript spec assumes denormals are supported and != zero

In computer science, subnormal numbers are the subset of
denormalized numbers (sometimes called denormals) that fill the
underflow gap around zero in floating-point arithmetic. Any non-zero
number with magnitude smaller than the smallest positive normal
number is subnormal, while denormal can also refer to numbers outside
that range.!]

N I) I
F ey d 0 b |
1

2 3 4

L
| ||
0

An unaugmented floating-point system would contain only =

normalized numbers (indicated in red). Allowing denormalized
numbers (blue) extends the system's range.

https://en.wikipedia.org/wiki/Subnormal_number

https://en.wikipedia.org/wiki/Subnormal_number

Issue 382005099 (trigger)

const denormal = 5E-324;

console.log(Denormal float value outside processor: S${denormal}’);
// Prints "5e-324"

class DenormalDemoProcessor extends AudioWorkletProcessor {
process(inputs, outputs, parameters) {
this.port.postMessage(Denormal float value inside processor: S{denormal}’);
// Prints "0" (!)
}
}

registerProcessor('denormal-demo-processor', DenormalDemoProcessor);

Issue 382005099 (PoC Exploit)

// See https://crbug.com/382605099#comment19

function poc(x) {
let obj = {denormal: 5E-324};
new Float64Array();

let positive = (x & 1) + 1;
let denormal = Math.min(obj.denormal, positive);
let b = Object.is(denormal, 9);

letn=>b] 0;
n *= Oxffffffff;
leto=n+1;

let o_ = (Math.random() <= 1) ? o : undefined;
let i = Math.sign(o_) * 64;

let first = [1];

first[i] = 2;

let second = [1,2,3];
return {first, second};

Exploit abuses assumptions made
by optimizing compiler

o Essentially that 5E-324 !'= @
Leads to incorrect range analysis

Requires a few more tricks to make
it work though
Might also be exploitable in other

ways, e.g. via bytecode compiler

https://crbug.com/382005099#comment19

Thank youl!

Questions?

