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Why JavaScript Engine Security is hard

● Compiler-based memory safety doesn’t work if compiler is attack surface
○ => Any logic bug can potentially turn into memory corruption

● Disabling optional compilers solves only a part of the problem
○ Plenty of bugs elsewhere (e.g. runtime) …

○ … and it is very slow :(

=> Writing a high-performance, memory-safe JS engine is hard



Write Bug Free Code

Big, hard problem

High-performance, 
memory-safe 
JavaScript
engine?



A different approach…

Idea:

● Accept that bugs will happen 
and that memory will be 
corrupted

● Limit which memory can be 
corrupted

● Make that a security boundary

=> Result: an in-process sandbox
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Basically: ban all raw pointers!



Sandbox with Hardware Support?

● In the future, may be possible to 

“drop privileges” when executing 

JS or Wasm code

● Would be very similar to 

userspace/kernel split

● Ideally: want to be able to run 

untrusted machine code



Lots of smaller, 
simpler problems

High-performance, 
memory-safe 
JavaScript
engine!
(with a sandbox)



Performance



Performance

● Sandbox building blocks are fundamentally cheap
○ Offsets require just an additional add or shift+add instruction

○ Pointer table requires one additional memory load for external references

● => Benefit over other memory safety technologies

● Today: overhead of sandbox is only around 1% on popular benchmarks
○ => Can be (and is already) enabled by default!

ldr x3, [x0, #7]
ldr x3, [x0, #7]
add x3, x28, x3, lsr #24

Sandboxification (x28 always contains the sandbox base)



Untrusted Indices



Untrusted Indices

Tagged<MyHeapObject> obj = ...;

int idx = obj->get_the_index();

int val = obj->get_the_value();

some_global_array[idx] = val;



Untrusted Indices

Tagged<MyHeapObject> obj = ...;

uint idx = obj->get_the_index();

int val = obj->get_the_value();

SBXCHECK(idx < some_global_array_size);

some_global_array[idx] = val;
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Broken Invariants

std::vector<std::string> JSObject::GetPropertyNames() {
   int num_properties = TotalNumberOfProperties();
   std::vector<std::string> properties(num_properties);

   for (int i = 0; i < NumberOfInObjectProperties(); i++) {
       properties[i] = GetNameOfInObjectProperty(i);
   }

   // Deal with the other types of properties
   // ...



Broken Invariants

std::vector<std::string> JSObject::GetPropertyNames() {
   int num_properties = TotalNumberOfProperties();
   std::vector<std::string> properties(num_properties);

   for (int i = 0; i < NumberOfInObjectProperties(); i++) {
       SBXCHECK(i < properties.size());
       properties[i] = GetNameOfInObjectProperty(i);
   }

   // Deal with the other types of properties
   // ...
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Sandbox CFI
● Obvious: machine code cannot be inside the sandbox

○ => Move out of the sandbox

● Obvious: cannot have raw pointers to machine code inside the sandbox
○ => Use code pointer table indirection (essentially a form of CFI)

● Less obvious: code metadata cannot be inside the sandbox
○ Can e.g. lead to code corruption when manipulated

○ => Move out of the sandbox

● Less obvious: interpreter bytecode cannot be in the sandbox
○ Causes stack corruption if manipulated

○ => Move out of sandbox and also reference via a pointer table



0xa38000000000

V8 Sandbox (e.g. 1TB)
0xa48000000000

Blink Object

Bytecode

HeapObj1

HeapObj2
HeapObj3

V8 Trusted Space

JIT Code
V8 Code Space

Blink Heap

Code 
Metadata

0 Type + Pointer

External Ptr Table

Type + Pointer1

0 Pointer

Code Ptr Table 

Pointer1
0 Type + Pointer

Trusted Ptr Table 

Type + Pointer1

Pointer
Offset
Index



Sandbox CFI

And more subtle issues in this area:

● Calling convention/signature mismatch

● Deoptimization and tier-up

● Desynchronized code references

● …

=> Still work to do in this area

JS 
Callsite

JS 
Func

Wasm 
Func



Testing



Testing

● Sandbox is testable
○ Clear attacker model + tools to develop and validate sandbox bypasses

● This enables:
○ automatic fuzzing

○ ability to write regression tests

○ inclusion in Chrome’s bug bounty program (active since March 2024)

let memory = new Sandbox.MemoryView(0, kSize);
let dv = new DataView(memory);
// Full read+write to sandbox address space
dv.setUint8(0x41414141, 0x42);



Demo



http://www.youtube.com/watch?v=pZ36DPQGHJc


http://www.youtube.com/watch?v=3AHeSKK8bJc


Conclusion

Sandbox increases length of (typical) V8-based Chrome exploit chain

Chrome 
Sandbox Bug

V8
Sandbox Bug

V8
Bug

Key question: how hard is this new attack surface?

… Only one way to find out: build it, then see what happens :)



Resources

● Blog post: v8.dev/blog/sandbox

● README: src/sandbox/README.md

● Past sandbox bugs: v8-sandbox buganizer hotlist

● Sandbox VRP rules: g.co/chrome/vrp/#v8-sandbox-bypass-rewards

https://v8.dev/blog/sandbox
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/sandbox/README.md
https://issues.chromium.org/hotlists/4802478
https://g.co/chrome/vrp/#v8-sandbox-bypass-rewards


Questions?


