
The V8 Heap Sandbox
OffensiveCon 2024

Samuel Groß - Google V8 Security

Typical Exploit Flow

V8 Bug Memory
Corruption

Arbitrary
Memory

Read & Write

Code
Execution

(in Renderer)

Chrome
Sandbox Bug

Code
Execution

(Unsandboxed)
…

Typical Exploit Flow

V8 Sandbox

V8 Bug Memory
Corruption

Arbitrary
Memory

Read & Write

Code
Execution

(in Renderer)

Chrome
Sandbox Bug

Code
Execution

(Unsandboxed)
…

Why JavaScript Engine Security is hard

“Typical” Application

Code

Data

Compiler + Runtime

Hardware

Attacker controlled

Memory safety (can be) guaranteed here

Why JavaScript Engine Security is hard

JavaScript Engine

Code

Data

Compiler + Runtime

Hardware

Attacker controlled

This is direct attack surface
=> Cannot guarantee memory safety here

Why JavaScript Engine Security is hard

● Compiler-based memory safety doesn’t work if compiler is attack surface
○ => Any logic bug can potentially turn into memory corruption

● Disabling optional compilers solves only a part of the problem
○ Plenty of bugs elsewhere (e.g. runtime) …

○ … and it is very slow :(

=> Writing a high-performance, memory-safe JS engine is hard

Write Bug Free Code

Big, hard problem

High-performance,
memory-safe
JavaScript
engine?

A different approach…

Idea:

● Accept that bugs will happen
and that memory will be
corrupted

● Limit which memory can be
corrupted

● Make that a security boundary

=> Result: an in-process sandbox

V8 Sandbox

“Privileged” Address
Space

“Privileged” Address
Space

Can corrupt
memory here

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

Raw pointer

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

Offset from sandbox base

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

Offset from sandbox base

External
Object

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

Offset from sandbox base

External
Object

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

External
Object

Offset from sandbox base

0 Type + Pointer

External Ptr Table

Type + Pointer1

Index

Lower
Addresses

Higher
Addresses

0xa38000000000

V8 Sandbox (1TB)
0xa48000000000

HeapObj2

HeapObj1

External
Object

Offset from sandbox base

0 Type + Pointer

External Ptr Table

Type + Pointer1

Index

Basically: ban all raw pointers!

Sandbox with Hardware Support?

● In the future, may be possible to

“drop privileges” when executing

JS or Wasm code

● Would be very similar to

userspace/kernel split

● Ideally: want to be able to run

untrusted machine code

Lots of smaller,
simpler problems

High-performance,
memory-safe
JavaScript
engine!
(with a sandbox)

Performance

Performance

● Sandbox building blocks are fundamentally cheap
○ Offsets require just an additional add or shift+add instruction

○ Pointer table requires one additional memory load for external references

● => Benefit over other memory safety technologies

● Today: overhead of sandbox is only around 1% on popular benchmarks
○ => Can be (and is already) enabled by default!

ldr x3, [x0, #7]
ldr x3, [x0, #7]
add x3, x28, x3, lsr #24

Sandboxification (x28 always contains the sandbox base)

Untrusted Indices

Untrusted Indices

Tagged<MyHeapObject> obj = ...;

int idx = obj->get_the_index();

int val = obj->get_the_value();

some_global_array[idx] = val;

Untrusted Indices

Tagged<MyHeapObject> obj = ...;

uint idx = obj->get_the_index();

int val = obj->get_the_value();

SBXCHECK(idx < some_global_array_size);

some_global_array[idx] = val;

Broken Invariants

Broken Invariants

std::vector<std::string> JSObject::GetPropertyNames() {
 int num_properties = TotalNumberOfProperties();
 std::vector<std::string> properties(num_properties);

 for (int i = 0; i < NumberOfInObjectProperties(); i++) {
 properties[i] = GetNameOfInObjectProperty(i);
 }

 // Deal with the other types of properties
 // ...

Broken Invariants

std::vector<std::string> JSObject::GetPropertyNames() {
 int num_properties = TotalNumberOfProperties();
 std::vector<std::string> properties(num_properties);

 for (int i = 0; i < NumberOfInObjectProperties(); i++) {
 SBXCHECK(i < properties.size());
 properties[i] = GetNameOfInObjectProperty(i);
 }

 // Deal with the other types of properties
 // ...

Sandbox CFI

Sandbox CFI
● Obvious: machine code cannot be inside the sandbox

○ => Move out of the sandbox

Sandbox CFI
● Obvious: machine code cannot be inside the sandbox

○ => Move out of the sandbox

● Obvious: cannot have raw pointers to machine code inside the sandbox
○ => Use code pointer table indirection (essentially a form of CFI)

Sandbox CFI
● Obvious: machine code cannot be inside the sandbox

○ => Move out of the sandbox

● Obvious: cannot have raw pointers to machine code inside the sandbox
○ => Use code pointer table indirection (essentially a form of CFI)

● Less obvious: code metadata cannot be inside the sandbox
○ Can e.g. lead to code corruption when manipulated

○ => Move out of the sandbox

Sandbox CFI
● Obvious: machine code cannot be inside the sandbox

○ => Move out of the sandbox

● Obvious: cannot have raw pointers to machine code inside the sandbox
○ => Use code pointer table indirection (essentially a form of CFI)

● Less obvious: code metadata cannot be inside the sandbox
○ Can e.g. lead to code corruption when manipulated

○ => Move out of the sandbox

● Less obvious: interpreter bytecode cannot be in the sandbox
○ Causes stack corruption if manipulated

○ => Move out of sandbox and also reference via a pointer table

0xa38000000000

V8 Sandbox (e.g. 1TB)
0xa48000000000

Blink Object

Bytecode

HeapObj1

HeapObj2
HeapObj3

V8 Trusted Space

JIT Code
V8 Code Space

Blink Heap

Code
Metadata

0 Type + Pointer

External Ptr Table

Type + Pointer1

0 Pointer

Code Ptr Table

Pointer1
0 Type + Pointer

Trusted Ptr Table

Type + Pointer1

Pointer
Offset
Index

Sandbox CFI

And more subtle issues in this area:

● Calling convention/signature mismatch

● Deoptimization and tier-up

● Desynchronized code references

● …

=> Still work to do in this area

JS
Callsite

JS
Func

Wasm
Func

Testing

Testing

● Sandbox is testable
○ Clear attacker model + tools to develop and validate sandbox bypasses

● This enables:
○ automatic fuzzing

○ ability to write regression tests

○ inclusion in Chrome’s bug bounty program (active since March 2024)

let memory = new Sandbox.MemoryView(0, kSize);
let dv = new DataView(memory);
// Full read+write to sandbox address space
dv.setUint8(0x41414141, 0x42);

Demo

http://www.youtube.com/watch?v=pZ36DPQGHJc

http://www.youtube.com/watch?v=3AHeSKK8bJc

Conclusion

Sandbox increases length of (typical) V8-based Chrome exploit chain

Chrome
Sandbox Bug

V8
Sandbox Bug

V8
Bug

Key question: how hard is this new attack surface?

… Only one way to find out: build it, then see what happens :)

Resources

● Blog post: v8.dev/blog/sandbox

● README: src/sandbox/README.md

● Past sandbox bugs: v8-sandbox buganizer hotlist

● Sandbox VRP rules: g.co/chrome/vrp/#v8-sandbox-bypass-rewards

https://v8.dev/blog/sandbox
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/sandbox/README.md
https://issues.chromium.org/hotlists/4802478
https://g.co/chrome/vrp/#v8-sandbox-bypass-rewards

Questions?

