
Advancements in
JavaScript Engine Fuzzing

Finding cool bugs with little compute - OffensiveCon’23
Carl Smith, Samuel Groß - V8 Security

fuzzilli.io

http://fuzzilli.io

Fuzzilli Recap
v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v3 <- LoadInt ‘1’

 v4 <- CallMethod ‘slice’, v2, [v3]

 Return v4

EndPlainFunction

v5 <- LoadFloat ‘13.37’

v6 <- CallFunction v0, [v5]

Fuzzilli Recap
v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v3 <- LoadInt ‘1’

 v4 <- CallMethod ‘slice’, v2, [v3]

 Return v4

EndPlainFunction

v5 <- LoadFloat ‘13.37’

v6 <- CallFunction v0, [v5]

v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v4 <- LoadInt ‘100’

 SetProperty v2, ‘length’, v4

 v5 <- CallMethod ‘slice’, v2, [v1]

 Return v5

EndPlainFunction

v6 <- LoadFloat ‘42.0’

v7 <- CallFunction v0, [v5]

Mutate

Splicing

Program 1

...

v21 <- BeginPlainFunction -> v22, v23

 ...

EndPlainFunction

...

Program 2

v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v3 <- LoadInt ‘1’

 v4 <- CallMethod ‘slice’, v2, [v3]

 Return v4

EndPlainFunction

v5 <- LoadFloat ‘13.37’

V6 <- CallFunction v0, [v5]

Splicing

Program 1

...

v21 <- BeginPlainFunction -> v22, v23

 ...

 v35 <- CreateArray [v23, v23, v23]

 v36 <- LoadInt ‘1’

 v37 <- CallMethod ‘slice’ v35, [v36]

 Return v37

EndPlainFunction

...

Program 2

v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v3 <- LoadInt ‘1’

 v4 <- CallMethod ‘slice’, v2, [v3]

 Return v4

EndPlainFunction

v5 <- LoadFloat ‘13.37’

V6 <- CallFunction v0, [v5]

Fuzzilli Recap
v0 <- BeginPlainFunction -> v1

 v2 <- CreateArray [v1, v1, v1]

 v3 <- LoadInt ‘1’

 v4 <- CallMethod ‘slice’, v2, [v3]

 Return v4

EndPlainFunction

v5 <- LoadFloat ‘13.37’

v6 <- CallFunction v0, [v5]

function f0(v1) {

 const v2 = [v1, v1, v1];

 return v2.slice(1);

}

f0(13.37);

Lift

This finds bugs, but not enough…

Space of all possible JavaScript
programs

Space of (minimal)
JavaScript programs that
increase code coverage in

V8*

* much smaller in reality. Also every fuzzing run will cover different parts

Space of programs
generated by a fuzzer*

* Basically, one mutation away from the corpus

XBugs

X

X

X
How to find this one?

X

X

● Import existing JavaScript code
for mutation, hope it’s “close” to
the bug
○ Now possible with new

JavaScript -> FuzzIL
compiler!

How to find this one?

X

X

● Import existing JavaScript code
for mutation, hope it’s “close” to
the bug
○ Now possible with new

JavaScript -> FuzzIL
compiler!

● Use different feedback
○ Future research topic?

How to find this one?

X

X

● Import existing JavaScript code
for mutation, hope it’s “close” to
the bug
○ Now possible with new

JavaScript -> FuzzIL
compiler!

● Use different feedback
○ Future research topic?

● Use specialized mutators
○ To “hint” fuzzer towards

known bug patterns

How to find this one?

CVE-2016-4622

let a = [];

for (let i = 0; i < 100; i++) a.push(i + 0.123);

let evil = { valueOf() {

 a.length = 0; return 10;

}};

// Triggers valueOf callback of evil and unexpectedly
// shrinks the Array, leading to an OOB access
let b = a.slice(0, evil);

// b = [0.123,1.123,2.12199579146e-313,0,0,0,0,0,0,0

CVE-2016-4622

let a = [];

for (let i = 0; i < 100; i++) a.push(i + 0.123);

let evil = { valueOf() {

 a.length = 0; return 10;

}};

// Triggers valueOf callback of evil and unexpectedly
// shrinks the Array, leading to an OOB access
let b = a.slice(0, evil);

// b = [0.123,1.123,2.12199579146e-313,0,0,0,0,0,0,0

CVE-2016-4622

let a = [];

for (let i = 0; i < 100; i++) a.push(i + 0.123);

let evil = { valueOf() {

 a.length = 0; return 10;

}};

// Triggers valueOf callback of evil and unexpectedly
// shrinks the Array, leading to an OOB access
let b = a.slice(0, evil);

// b = [0.123,1.123,2.12199579146e-313,0,0,0,0,0,0,0

Fuzzer is rewarded for finding
these individually, but not for
combining them!

Probing Mutator

Probing Mutator

let v1 = {};

// How is v1 being used?

builtin_func(v1);

Probing Part 1: Intermediate Program

let v1 = {};

// How is v1 being used?

// Let’s find out!

probe(v1);

builtin_func(v1);

Probing Part 1: Intermediate Program

let v1 = {};

// How is v1 being used?

// Let’s find out!

probe(v1);

builtin_func(v1);

function probe(v) {
 // Turn |v| into a JS Proxy that
 // records all property loads
 // (and more), then sends that
 // information back to Fuzzilli.
}

Probing Part 1: Intermediate Program

let v1 = {};

// How is v1 being used?

// Let’s find out!

probe(v1);

builtin_func(v1);

function probe(v) {
 // Turn |v| into a JS Proxy that
 // records all property loads
 // (and more), then sends that
 // information back to Fuzzilli.
}

Load .valueOf from v1

Probing Part 2: Final Program

let v1 = {};

function v2() {

 ...;

}

v1.valueOf = v2;

builtin_func(v1);

crbug.com/1381064 (and a couple other, similar bugs)

const v8 = new ArrayBuffer(1050, {"maxByteLength":6623679});

const v10 = new Uint8ClampedArray(v8);

function v11() {

 const v15 = v8.resize();

}

v10[Symbol.toPrimitive] = v11;

// Triggers toPrimitive conversion and unexpectedly shrinks the

// ArrayBuffer, leading to a (harmless) OOB access.

v10[916] = v10;

crbug.com/1381064 (and a couple other, similar bugs)

const v8 = new ArrayBuffer(1050, {"maxByteLength":6623679});

const v10 = new Uint8ClampedArray(v8);

function v11() {

 const v15 = v8.resize();

}

v10[Symbol.toPrimitive] = v11;

// Triggers toPrimitive conversion and unexpectedly shrinks the

// ArrayBuffer, leading to a (harmless) OOB access.

v10[916] = v10;

Exploration

function f2(v3, v4) {

 // How can v3 be used?

}

Exploration (Step 1)

function f2(v3, v4) {

 // How can v3 be used?

 // Let’s find out!

 explore(v3);

}

function explore(v) {
 // Determine type of |v|
 // using the typeof operator
 // and enumerate all fields
 // and methods, then pick a
 // random “action”, e.g. a
 // property load, to perform.
}

Exploration (Step 1)

function f2(v3, v4) {

 // How can v3 be used?

 // Let’s find out!

 explore(v3);

}

function explore(v) {
 // Determine type of |v|
 // using the typeof operator
 // and enumerate all fields
 // and methods, then pick a
 // random “action”, e.g. a
 // property load, to perform.
}

Call method “foobar” with arg 42.

Exploration (Step 2)

function f2(v3, v4) {

 v3.foobar(42);

}

Example bug: crbug.com/1377775
const v19 = {};

v19.a = 42;

const v20 = [v19];

function v21(v23) {

 const v26 = v23.shift();

 const v27 = v23.at(1000000); // .at is inlined by Turbofan but the type check

} // is faulty, leading to a type confusion when

v19.__proto__ = v20; // v23 is not a JSArray.

for (let v39 = 0; v39 < 100; v39++) {

 const v43 = v21(v19);

 const v45 = v21(v20);

}

X

X

X

X

X

Example bug: crbug.com/1377775
const v19 = {}; // Step 1

v19.a = 42; // Step 2

const v20 = [v19]; // Step 3

function v21(v23) {

 const v26 = v23.shift(); // Step 4

 const v27 = v23.at(1000000); // Step 5

}

v19.__proto__ = v20; // Step 6

for (let v39 = 0; v39 < 10000; v39++) { // Step 7

 const v43 = v21(v19); // Step 8

 const v45 = v21(v20); // Step 9

}

CVE-2022-3723 (V8 ITW)
function setInnerProperty(o) {
 o.inner.foo = {};
}
function makeObject() {
 var o = {
 inner: {
 ['foo']: 0
 }
 };
 setInnerProperty(o, ...arguments);
 return o;
}
makeObject();
gc();
makeObject();
gc();

let o = makeObject();
%HeapObjectVerify(o.inner);

CVE-2022-3723 (V8 ITW)
function setInnerProperty(o) { // Step 1
 o.inner.foo = {}; // Step 2-3
}
function makeObject() { // Step 4
 var o = { // Step 5
 inner: { // Step 6
 ['foo']: 0 // Step 7
 }
 };
 setInnerProperty(o, ...arguments); // Step 8
 return o;
}
makeObject(); // Step 9
gc(); // Step 10
makeObject(); // Step 11
gc(); // Step 12

let o = makeObject(); // Step 13
%HeapObjectVerify(o.inner); // Step 14

CVE-2022-3723 (V8 ITW)
function setInnerProperty(o) { // Step 1
 o.inner.foo = {}; // Step 2-3
}
function makeObject() { // Step 4
 var o = { // Step 5
 inner: { // Step 6
 ['foo']: 0 // Step 7
 }
 };
 setInnerProperty(o, ...arguments); // Step 8
 return o;
}
makeObject(); // Step 9
gc(); // Step 10
makeObject(); // Step 11
gc(); // Step 12

let o = makeObject(); // Step 13
%HeapObjectVerify(o.inner); // Step 14

CVE-2022-3723 (V8 ITW)
function setProperty(o) { // Step 1
 o.foo = {}; // Step 2
}
function makeObject() { // Step 3
 var o = { // Step 4
 ['foo']: 0 // Step 5
 };
 setProperty(o, ...arguments); // Step 6
 return o;
}
makeObject(); // Step 7
%GetObjectIntoInterestingState(o); // Step 8
makeObject(); // Step 9
%HeapObjectVerify(o.inner); // Step 10

X

X

● Import existing JavaScript code
for mutation, hope it’s “close” to
the bug
○ Now possible with new

JavaScript -> FuzzIL
compiler!

● Use different feedback
○ Future research topic?

● Use specialized mutators
○ To “hint” fuzzer towards

known bug patterns
● Use “human-assisted” fuzzing

○ Let the researcher guide
the fuzzer

How to find this one?

Code Shape ITW
function f1(...) {

...
}

function f2(...) {
...

}

...

%GetObjectIntoInterestingState(...);

...

for(let i = 0; i < 100; i++) {
...

}

“Hybrid” Fuzzing with ProgramTemplates
let f1 = b.buildPlainFunction(with: b.randomParameters()) {

 b.build(50)

}

b.getObjectIntoInterestingState(b.randomArguments())

b.buildRepeatLoop(n: 100) {

 let f = b.randomFunction()

 let args = b.randomArguments(forCalling: f)

 b.callFunction(, withArgs: args)

}

Fuzzilli’s HybridEngine

ProgramTemplate

1. Generate

Mutated Program (1)

Mutated Program (N)

2. Mutate

…

Generated Program

RegExp Fuzzer in Fuzzilli

ProgramTemplate("RegExpFuzzerTemplate") { b in

 let f = b.buildPlainFunction(with: .parameters(n: 0)) {
 let pattern = probability(0.5) ? chooseUniform(from: b.fuzzer.environment.interestingRegExps) : b.randomString()
 let regExpVar = b.loadRegExp(pattern, RegExpFlags.random())

 let subjectVar: b.loadString(b.randomString())

 let symbol = b.loadBuiltin("Symbol")
 let resultVar = b.callMethod("exec", on: regExpVar, withArgs: [subjectVar])

 b.build(n: 7)

 b.doReturn(resultVar)
 }

 b.callFunction(f)
 b.callFunction(f)

 b.build(n: 15)
}

RegExp Fuzzer in Fuzzilli

crbug.com/1439691:

 function f0() {

 }

 /(?!(a))\1/gudyi[Symbol.replace]("f\uD83D\uDCA9ba\u2603", f0);

Serializer API Fuzzer

 // Serialize a random object

 let content = b.callMethod("serialize", on: serializer, withArgs: [b.randomVariable()])

 // Mutate the contents

 b.mutate(content)

 // Deserialize the resulting buffer

 let _ = b.callMethod("deserialize", on: serializer, withArgs: [content])

 // Deserialized object is available in a variable now and can be used by following code

Serializer API Fuzzer

crbug.com/1364974:

const v4 = d8.serializer.serialize(-2147483648n);
 const v5 = new Uint8Array(v4);

v5[3] = 1;
 const v9 = d8.serializer.deserialize(v4);
 ~v9;

X

Space of JavaScript
programs generated by
“mini fuzzer”

Summary

● Key challenge: JavaScript “search space” is extremely large

● Coverage guided fuzzing only gets you so far

○ Can find some types of bugs, but will struggle with others

● Specific mutators can be used to target certain bug types

○ Fuzzilli’s new Probe- and Explore mutators have each found new bugs

● “Human-guided fuzzing” to target areas that researcher deems interesting

○ Can build “mini fuzzers” on top of Fuzzilli’s HybridEngine

