Advancements in
JavaScript Engine Fuzzing

Finding cool bugs with little compute - OffensiveCon’23

Carl Smith, Samuel GroB3 - V8 Security

:= README.md

Fuzzilli

A (coverage-)guided fuzzer for dynamic language interpreters based on a custom
intermediate language ("FuzzIL") which can be mutated and translated to JavaScript.

fuzzilli.io

http://fuzzilli.io

Fuzzilli Recap

vO <- BeginPlainFunction -> vl
v2 <- CreateArray [vl, v1, vl1]
v3 <- LoadInt ‘1’
v4 <- CallMethod ‘slice’, v2, [v3]
Return v4
EndPlainFunction
v5 <- LoadFloat ¢13.37’

v6 <- CallFunction vO, [v5]

Fuzzilli Recap

vO <- BeginPlainFunction -> vl

v2 <- CreateArray [vl, vl, vl] vO <- BeginPlainFunction -> vl

v3 <- LoadInt ‘1’ v2 <- CreateArray [vl, v1, v1]

v4 <- CallMethod ‘slice’, v2, [v3] v4 <- LoadInt ¢100°

Return v4 Mutate SetProperty v2, ‘length’, v4
EndPlainFunction v5 <- CallMethod ‘slice’, v2, [vi1]
v5 <- LoadFloat ¢13.37’ Return v5
v6 <- CallFunction vO, [v5] EndPlasinFunction

v6 <- LoadFloat ‘42.0’

v7 <- CallFunction v0@, [Vv5]

Splicing

Program 1

v21 <- BeginPlainFunction -> v22, v23

EndPlainFunction

Program 2
vO <- BeginPlainFunction -> vl
v2 <- CreateArray [v1l, vl, v1]
v3 <- LoadInt ‘1’
v4 <- CallMethod ‘slice’, v2, [v3]
Return v4
EndPlainFunction
v5 <- LoadFloat ¢13.37’

V6 <- CallFunction v0O, [v5]

Splicing

Program 1
v21 <- BeginPlainFunction -> v22, v23

v35 <- CreateArray [v23, v23, v23]
v36 <- LoadInt ‘1’

v37 <- CallMethod ‘slice’ v35, [v36]
Return v37

EndPlainFunction

Program 2
vO <- BeginPlainFunction -> vl
v2 <- CreateArray [v1l, vl, v1]
v3 <- LoadInt ‘1’
v4 <- CallMethod ‘slice’, v2, [v3]
Return v4
EndPlainFunction
v5 <- LoadFloat ¢13.37’

V6 <- CallFunction v0O, [v5]

Fuzzilli Recap

vO <- BeginPlainFunction -> vl
v2 <- CreateArray [vl, v1, vl1]

v3 <- LoadInt ‘1’ .
function fOo(vl) {

v4 <- CallMethod ‘slice’, v2, [v3]
const v2 = [vl, vl, vl];

Return v4 Lift

_ _ return v2.slice(1l);
EndPlainFunction

}
f0(13.37);

v5 <- LoadFloat ¢13.37°

v6 <- CallFunction vO, [v5]

This finds bugs, but not enough...

Space of all possible JavaScript

programs

Space of (minimal)
JavaScript programs that
increase code coverage in
V8*

* much smaller in reality. Also every fuzzing run will cover different parts

Space of programs
generated by a fuzzer*

* Basically, one mutation away from the corpus

How to find this one? \
X

How to find this one? \
X

e Import existing JavaScript code
for mutation, hope it's “close” to
the bug

o Now possible with new
JavaScript -> FuzzIL
compiler!

How to find this one? \
X

e Import existing JavaScript code
for mutation, hope it's “close” to
the bug

o Now possible with new
JavaScript -> FuzzIL
compiler!

e Use different feedback

o Future research topic?

How to find this one? \
X

e Import existing JavaScript code
for mutation, hope it's “close” to
the bug

o Now possible with new
JavaScript -> FuzzIL
compiler!

e Use different feedback

o Future research topic?

e Use specialized mutators

o To “hint” fuzzer towards
known bug patterns

CVE-2016-4622

let a = [];
for (let i = 0; 1 < 100; 1i++) a.push(i + 0.123);
let evil = { valueOf() {

a.length = 0; return 10;
1}

let b = a.slice(0, evil);

CVE-2016-4622

let a = [];
for (let i = 0; 1 < 100; 1i++) a.push(i + 0.123);
let evil = { valueOf() {

a.length = 03 return 10;
I

let b = a.slice(0, evil);

CVE-2016-4622

let a = [];
for (let i = 0; 1 < 100; 1i++) a.push(i + 0.123);
let evil = { valueOf() {

Fuzzer is rewarded for finding
a.length = 03 return 10; these individually, but not for
1}; combining them!

let b = a.slice(0, evil);

Probing Mutator

Probing Mutator

let vl = {};

builtin_func(vl);

Probing Part 1: Intermediate Program

let vl = {};

probe(vl);

builtin_func(vl);

Probing Part 1: Intermediate Program

function probe(v) {

let vl = {};

probe(vl);

builtin_func(vl);

Probing Part 1: Intermediate Program

function probe(v) {

let vl = {};

/

probe(vl); g

builtin_func(vl): Load .valueOf from vl

Probing Part 2: Final Program

let vl = {};

function v2() {
.

}

vl.valueOf = v2;

builtin_func(vl);

crbug.com/1381064 (and a couple other, similar bugs)

const v8 = new ArrayBuffer (1050, {'"maxBytelLength":6623679});
const v10 = new Uint8ClampedArray(v8);
function v11() {

const v15 = v8.resize();

}

v10[Symbol.toPrimitive] = vll;

v10[916] = v10;

crbug.com/1381064 (and a couple other, similar bugs)

const v8 = new ArrayBuffer (1050, {"maxBytelLength'":6623679});
const v10 = new Uint8ClampedArray(v8);
function vi11() {

const v15 = v8.resize();

}

viO[Symbol.toPrimitive] = v11j

v10[916] = v10;

Exploration

function f2(v3, v4) {

Exploration (Step 1)

function f2(v3, v4) {
// How can v3 be used?
// Let’s find out!

explore(v3);

function explore(v) {

//
//
//
//
//
//

Determine type of |v|
using the typeof operator
and enumerate all fields
and methods, then pick a
random “action”, e.g. a
property load, to perform.

Exploration (Step 1)

function explore(v) {

function f2(v3, v4) {

explore(v3); —

=
} Call method “foobar” with arg 42.

Exploration (Step 2)

function f2(v3, v4) {

v3.foobar(42);

Example bug: crbug.com/1377775

const v19 = {};
v19.a = 42;
const v20 = [v19];

function v21(v23) {

const v26 = v23.shift();
const v27 = v23.at(1000000)
}
v19.__proto__ = v20;

for (let v39 = 0; v39 < 100; v39++) {
const v43 = v21(v19);
const v45 = v21(v20);

Example bug: crbug.com/1377775

const v19 = {};
v19.a = 42;
const v20 = [v19];

function v21(v23) {

const v26 = v23.shift();
const v27 = v23.at(1000000);
}
v19.__proto__ = v20;

for (let v39 = 0; v39 < 10000; v39++) {
const v43 = v21(v19);
const v45 = v21(v20);

CVE-2022-3723 (V8 ITW)

function setInnerProperty(o) {
o.inner.foo = {};
}
function makeObject() {
var o = {
inner: {
['foo']: ©
}
}3
setInnerProperty(o, ...arguments);
return o;
}
makeObject () ;
gc();
makeObject() ;

gc()s

let o = makeObject();
%HeapObjectVerify(o.1inner);

CVE-2022-3723 (V8 ITW)

function setInnerProperty(o) {
o.inner.foo = {};
}
function makeObject() {
var o = {
inner: {
['foo']: ©
}
}3
setInnerProperty(o, ...arguments);
return o;
}
makeObject () ;
gc();
makeObject() ;

gc()s

let o = makeObject();
%HeapObjectVerify(o.1inner);

CVE-2022-3723 (V8 ITW)

function setInnerProperty(o) {
o.inner.foo = {};
}
function makeObject() {
var o = {
inner: {
['foo']: ©
}
13
setInnerProperty(o, ...arguments);
return o;
}
makeObject() ;
gc();
makeObject() ;

gc()s

let o = makeObject();
%HeapObjectVerify(o.1inner);

CVE-2022-3723 (V8 ITW)

function setProperty(o) {
o.foo = {};

}
function makeObject() {

var o = {

['foo']: ©
I
setProperty(o, ...arguments);
return o;

}

makeObject();
%GetObjectIntoInterestingState(o)3
makeObject();
%HeapObjectVerify(o.inner);

How to find this one? \
X

e Import existing JavaScript code
for mutation, hope it's “close” to
the bug

o Now possible with new
JavaScript -> FuzzIL
compiler!

e Use different feedback

o Future research topic?

e Use specialized mutators

o To “hint” fuzzer towards
known bug patterns

e Use “human-assisted” fuzzing

o Let the researcher guide
the fuzzer

Code Shape ITW

function f1(...) {

}

function f2(...) {

}

%GetObjectIntoInterestingState(...);

for(let i = 0; i < 100; i++) {

}

“Hybrid” Fuzzing with ProgramTemplates

let f1 = b.buildPlainFunction(with: b.randomParameters()) {

b.build(50)

b.getObjectIntoInterestingState(b.randomArguments())

b.buildRepeatLoop(n: 100) {
let f = b.randomFunction()
let args = b.randomArguments(forCalling: f)

b.callFunction(, withArgs: args)

Fuzzilli's HybridEngine

1. Generate

ProgramTemplate

Generated Program

Mutated Program (N)

2. Mutate

Mutated Program (1)

RegExp Fuzzer in Fuzzilli

ProgramTemplate("RegExpFuzzerTemplate") { b in
let f = b.buildPlainFunction(with: .parameters(n: 0)) {
let pattern = probability(0.5) ? chooseUniform(from: b.fuzzer.environment.interestingRegExps) : b.randomString()
let regExpVar = b.loadRegExp(pattern, RegExpFlags.random())
let subjectVar: b.loadString(b.randomString())

let symbol = b.loadBuiltin("Symbol")
let resultVar = b.callMethod("exec", on: regExpVar, withArgs: [subjectVar])

b.build(n: 7)

b.doReturn(resultVar)
}

b.callFunction(f)
b.callFunction(f)

b.build(n: 15)

RegExp Fuzzer in Fuzzilli

crbug.com/1439691:

function fo() {

}
/(?1(a))\1/gudyi[Symbol.replace] ("f\uD83D\uDCA9ba\u2603", f0);

Serializer API Fuzzer

// Serialize a random object

let content = b.callMethod("serialize", on: serializer, withArgs: [b.randomVariable()])

// Mutate the contents

b.mutate(content)

// Deserialize the resulting buffer

let _ = b.callMethod("deserialize", on: serializer, withArgs: [content])

// Deserialized object is available in a variable now and can be used by following code

Serializer API Fuzzer

crbug.com/1364974:

const v4 = d8.serializer.serialize(-2147483648n);
const v5 = new Uint8Array(v4);

v5[3] = 1;

const v9 = d8.serializer.deserialize(v4);

~V9;

Space of JavaScript
programs generated by
“mini fuzzer”

Summary

e Key challenge: JavaScript “search space” is extremely large

e Coverage guided fuzzing only gets you so far
o Can find some types of bugs, but will struggle with others
e Specific mutators can be used to target certain bug types
o Fuzzilli's new Probe- and Explore mutators have each found new bugs
e “Human-guided fuzzing” to target areas that researcher deems interesting

o Can build “mini fuzzers” on top of Fuzzilli's HybridEngine

