

A Brief History of
iMessage Exploitation
Samuel Groß (@5aelo), Ian Beer (@i41nbeer)

iMessage Exploitation ~ 2019

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html

iMessage Exploit Flow ~ 2019

Attack Surface?

Attack Surface: Deserialization
{
 ati = [NSKeyedArchiver Archive];
 gid = "27EDB72A-DFC1-43DD-B8AE-8DBD2CE70068";
 gv = 8;
 p = (
 "mailto:sender@foo.bar",
 "mailto:receiver@foo.bar"
);
 pv = 0;
 r = "E417E766-0B85-4427-AF49-9246AA76C803";
 t = "Hello BlueHat!";
 v = 1;
 x = "<html><body>Hello BlueHat!</body></html>";
}

Attack Surface: Deserialization
{
 ati = [NSKeyedArchiver Archive];
 gid = "27EDB72A-DFC1-43DD-B8AE-8DBD2CE70068";
 gv = 8;
 p = (
 "mailto:sender@foo.bar",
 "mailto:receiver@foo.bar"
);
 pv = 0;
 r = "E417E766-0B85-4427-AF49-9246AA76C803";
 t = "Hello BlueHat!";
 v = 1;
 x = "<html><body>Hello BlueHat!</body></html>";
}

Attack Surface: Deserialization

● “NSKeyedArchiver [...] provides a way to encode objects (and scalar values)
into an architecture-independent format suitable for storage in a file.”

● Can (de)serialize pretty complex object hierarchies (even circles!)
● This is our attack surface!
● One key is deserialized in Springboard process, which is unsandboxed

NSArray

NSDictionary

NSString

NSNumber

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

ASLR Bypass?

Attack Surface:
NSKeyedUnarchiver

Exploitation (~ 2019): Defeating ASLR

Address Space

Dyld Shared Cache

Where is this mapping???

0x7fffffffffff

0x0

0x????????

Why is ASLR a Problem?

● Need communication channel between target process and exploit logic
● Usually no (big) problem for e.g. browser exploits: exploit logic implemented

in JavaScript => Runs inside the targeted process
● It is a problem for something like iMessage though…

(Abstract) Payload
with offsets

(Concrete) payload
with addressesTarget Process

1. Leak valid address
2. “Instantiate” payload

3. Deliver payload

Delivery Receipts as Communication Channel

● When iMessage process receives a
message, it sends a delivery receipt to
the sender

● If process crashes before sending the
receipt, the delivery receipt message is
never sent

● => 1-bit communication channel:
crashed or didn’t crash

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If

yes: address is valid,
otherwise not

● Do this as binary search to
find base address with
20-30 messages

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

PAC Bypass?

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

Defeating PAC (Pointer Authentication)

● PAC: cryptographic signature in unused bits of pointer
● Can no longer forge code pointers => breaks ROP, JOP, …

0000002012345678 a827152012345678

; Authenticate function pointer in X3
; and call it. Clobbers X3 if signature
; is invalid, leading to crash
AUTIZA X3
BL X3

; Sign pointer in X3
; (Done during process
; initialization etc.)
PACIZA X3

Defeating PAC (Pointer Authentication)

● PAC: cryptographic signature in unused bits of pointer
● Can no longer forge code pointers => breaks ROP, JOP, …
● But really, arbitrary code execution isn’t necessary
● (Mostly) enough to call existing functions and method

NSInvocation* invocation = [NSInvocation invocationWithMethodSignature:sig];
[invocation setTarget:foo];
[invocation setSelector:@selector(bar)];
[invocation invoke];
// [Foo bar] called

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

iMessage Hardening ~ 2019-2020

https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html

https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

NSArchiver Attack
Surface Reduction

Blastdoor (iOS 14, ~ mid 2020)

● Re-architectured iMessage processing
● Idea: complex parsing now happens in

a tightly sandboxed process:
MessagesBlastDoorService

● High-level logic implemented in Swift
● Also breaks crash oracle: crashing

process (BlastDoor) is not the process
sending the delivery receipt (imagent)

imagent

BlastDoor

imagent

Incoming iMessage

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

NSArchiver Attack
Surface Reduction

BlastDoor Sandbox

New Process
Architecture
(BlastDoor)

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

NSArchiver Attack
Surface Reduction

BlastDoor Sandbox

New Process
Architecture
(BlastDoor)

SharedCache
Re-sliding

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

NSArchiver Attack
Surface Reduction

BlastDoor Sandbox

New Process
Architecture
(BlastDoor)

SharedCache
Re-sliding

Exponential
Throttling

iMessage Exploit Flow ~ 2019

Memory
Corruption Bug

Unsandboxed
Code Execution

Constant Address of
Dyld Shared Cache

Abuse NSInvocation
to bypass PAC

Crash Oracle via
Delivery Receipts

Repeated Attempts
Possible (10s delay)

Break ASLR with
Oracle

ObjectiveC Object
Forgery despite PAC

Heap Spraying

Attack Surface:
NSKeyedUnarchiver

NSArchiver Attack
Surface Reduction

BlastDoor Sandbox

New Process
Architecture
(BlastDoor)

SharedCache
Re-sliding

Exponential
Throttling

ObjC Class
Pointer PAC

NSInvocation Hardening

ForcedEntry ~ 2021

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

iMessage Exploit Flow ~ 2021

Attack Surface?

imagent

BlastDoor

imagent

Incoming iMessage

IMTranscoderAgent

attachments

Rotating Earth by Marvel is licensed under CC BY-SA 3.0

...
00000300 08 10 00 00 10 00 08 18 |........|
00000308 00 08 00 00 00 21 ff 0b |.....!..|
00000310 4e 45 54 53 43 41 50 45 |NETSCAPE|
00000318 32 2e 30 03 01 00 00 00 |2.0.....|
...

...
00000300 08 10 00 00 10 00 08 18 |........|
00000308 00 08 00 00 00 21 ff 0b |.....!..|
00000310 4e 45 54 53 43 41 50 45 |NETSCAPE|
00000318 32 2e 30 03 01 01 00 00 |2.0.....|
...

one_loop.gif infinite_loop.gif

https://en.wikipedia.org/wiki/File:Rotating_earth_(large).gif
https://commons.wikimedia.org/wiki/User:Marvel
https://creativecommons.org/licenses/by-sa/3.0/deed.en

[IMGIFUtils copyGifFromPath:toDestinationPath:error]

objc_msgSend(a1,

 sel_readFileProperties_fromImageSource_withUpdatedLoopCount_error_,

 &v36,

 v16,

 0LL, // New loop counter to use

 &v35);

Implementation of infinite loop GIF edit in iMessage:

20: IMSharedUtilities copyGifFromPath:toDestinationPath:error:

19: IMSharedUtilities readFileProperties:fromImageSource:withUpdatedLoopCount:error:

18: IMSharedUtilities readFileProperties:fromImageSource:error:

17: ImageIO _CGImageSourceCopyProperties

16: ImageIO IIOImageSource::copyProperties

15: ImageIO IIOImageSource::getProperties

14: ImageIO IIO_Reader_PDF::updateSourceProperties

13: ImageIO CreateSessionPDFRef

12: CoreGraphics _CGPDFDocumentCreateWithProvider

11: CoreGraphics _pdf_xref_create

10: CoreGraphics _CGPDFXRefStreamCreate

 9: CoreGraphics _xref_stream_create

 8: CoreGraphics _xref_stream_read_section

 7: CoreGraphics _CGPDFSourceGetc

 6: CoreGraphics _CGPDFSourceRefill

 5: CoreGraphics _jbig2_filter_refill

 4: CoreGraphics read_bytes

 3: CoreGraphics JBIG2Stream::reset

 2: CoreGraphics JBIG2Stream::readSegments

 1: CoreGraphics JBIG2Stream::readTextRegionSeg

 0: CoreGraphics JBIG2Stream::readTextRegionSeg

iMessage

ImageIO

CoreGraphics

XPdf

alter
loop-count

property of an
animated GIF

process
arbitrary JBIG2

20: IMSharedUtilities copyGifFromPath:toDestinationPath:error:

19: IMSharedUtilities readFileProperties:fromImageSource:withUpdatedLoopCount:error:

18: IMSharedUtilities readFileProperties:fromImageSource:error:

17: ImageIO _CGImageSourceCopyProperties

16: ImageIO IIOImageSource::copyProperties

15: ImageIO IIOImageSource::getProperties

14: ImageIO IIO_Reader_PDF::updateSourceProperties

13: ImageIO CreateSessionPDFRef

12: CoreGraphics _CGPDFDocumentCreateWithProvider

11: CoreGraphics _pdf_xref_create

10: CoreGraphics _CGPDFXRefStreamCreate

 9: CoreGraphics _xref_stream_create

 8: CoreGraphics _xref_stream_read_section

 7: CoreGraphics _CGPDFSourceGetc

 6: CoreGraphics _CGPDFSourceRefill

 5: CoreGraphics _jbig2_filter_refill

 4: CoreGraphics read_bytes

 3: CoreGraphics JBIG2Stream::reset

 2: CoreGraphics JBIG2Stream::readSegments

 1: CoreGraphics JBIG2Stream::readTextRegionSeg

 0: CoreGraphics JBIG2Stream::readTextRegionSeg

iMessage

ImageIO

CoreGraphics

XPdf

alter
loop-count

property of an
animated GIF

process
arbitrary JBIG2

Iceberg photomontage by Uwe Kils is licensed under CC BY-SA 3.0

https://de.wikipedia.org/wiki/Datei:Iceberg.jpg
https://en.wikipedia.org/wiki/User:Kils
https://creativecommons.org/licenses/by-sa/3.0/deed.en

.png

.ai

.astc

.raw

.atx

.jpeg

.bc

.bmp
.cur

.gif
.heif

.icns

.ico
.jp2

.ktx

.mpo

.exr

.pbm

.pdf

.psd
.pvr

.rad

.tga

.tiff

A JBIG2 heap overflow

Guint numSyms;

numSyms = 0;

for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

 if (seg->getType() == jbig2SegSymbolDict) {

 numSyms += ((JBIG2SymbolDict *)seg)->getSize();

 }

 // ...

}

// ...

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *));

iMessage Exploit Flow ~ 2021

Memory
Corruption Bug

Attack Surface:
PDF/JBIG2 Parsing

ASLR Bypass?

Code Execution in
IMTranscoderAgent

vtable

Guint segNum int w

int h int line

Guchar* data

corruption

JBIG2Bitmap

segments GList
backing buffer

Unbounding JBIG2 canvas with a heap overflow

JBIG2 compression

JBIG2 compression

JBIG2 refinement operations

substituted original

X
O
R

=

difference

JBIG2 refinement operations: logic gates

OR

AND

XOR

XNOR

JBIG2 refinement operations: NAND

AND
XORA

B

1 Z

JBIG2 refinement operations: NAND

AND
XORA

B

1 Z

source: https://www.nand2tetris.org/

https://www.nand2tetris.org/

JBIG2 refinement operations: NAND

AND
XORA

B

1 Z

source:
https://www.nand2IMTranscoderAgentSandboxEscape.org/

https://www.nand2tetris.org/

JBIG2 refinement operations: ripple carry adder

OR
AND

XOR

AND

XOR

Cout

Z
Cin

Cin

B

B

A

A

Why is ASLR a Problem?

● Need communication channel between target process and exploit logic
● Now: Exploit logic implemented in JBIG2 VM => runs inside target process
● Explicit communication channel with attacker machine not necessary

(Abstract) Payload
with offsets

(Concrete) payload
with addressesTarget Process

1. Leak valid address
2. “Instantiate” payload

3. Deliver payload

iMessage Exploit Flow ~ 2021

Memory
Corruption Bug

Unbounded memory
access from JBIG2

PAC Bypass?

Implement “mini-CPU”
from JBIG2
compression operators

Run Exploit Logic in
JBIG2 “VM” to
bypass ASLR

Attack Surface:
PDF/JBIG2 Parsing

Code Execution in
IMTranscoderAgent

iMessage Exploit Flow ~ 2021

Memory
Corruption Bug

Unbounded memory
access from JBIG2

Create NSExpression
to bypass PAC

Implement “mini-CPU”
from JBIG2
decompression
operators

Run Exploit Logic in
JBIG2 “VM” to
bypass ASLR

Deserialize arbitrary
ObjectiveC Objects
through NSArchiver

Attack Surface:
PDF/JBIG2 Parsing

Code Execution in
IMTranscoderAgent

Conclusion

● The right mitigations/hardenings can make a big difference

● Still: should assume memory corruption bugs to be exploitable unless

proven otherwise (this is hard…)

● Sometimes not trivial to reason about where code executes

● Look out for hidden attack surface

