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iMessage Exploitation ~ 2019

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html


iMessage Exploit Flow ~ 2019

Attack Surface?



Attack Surface: Deserialization
{
    ati = [ NSKeyedArchiver Archive ];
    gid = "27EDB72A-DFC1-43DD-B8AE-8DBD2CE70068";
    gv = 8;
    p =     (
        "mailto:sender@foo.bar",
        "mailto:receiver@foo.bar"
    );
    pv = 0;
    r = "E417E766-0B85-4427-AF49-9246AA76C803";
    t = "Hello BlueHat!";
    v = 1;
    x = "<html><body>Hello BlueHat!</body></html>";
}
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Attack Surface: Deserialization

● “NSKeyedArchiver [...] provides a way to encode objects (and scalar values) 
into an architecture-independent format suitable for storage in a file.”

● Can (de)serialize pretty complex object hierarchies (even circles!)
● This is our attack surface!
● One key is deserialized in Springboard process, which is unsandboxed

NSArray

NSDictionary

NSString

NSNumber
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Exploitation (~ 2019): Defeating ASLR

Address Space

Dyld Shared Cache

Where is this mapping???

0x7fffffffffff

0x0

0x????????



Why is ASLR a Problem?

● Need communication channel between target process and exploit logic
● Usually no (big) problem for e.g. browser exploits: exploit logic implemented 

in JavaScript => Runs inside the targeted process
● It is a problem for something like iMessage though…

(Abstract) Payload 
with offsets

(Concrete) payload 
with addressesTarget Process

1. Leak valid address
2. “Instantiate” payload

3. Deliver payload



Delivery Receipts as Communication Channel

● When iMessage process receives a 
message, it sends a delivery receipt to 
the sender

● If process crashes before sending the 
receipt, the delivery receipt message is 
never sent

● => 1-bit communication channel: 
crashed or didn’t crash



Crash Oracle + Binary Search = ASLR defeat

Address Space

Dyld Shared Cache

0x7fffffffffff

0x0

● Construct payload to 
dereference a given address

● Send payload over iMessage
● Got a delivery receipt? If 

yes: address is valid, 
otherwise not

● Do this as binary search to 
find base address with 
20-30 messages
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Defeating PAC (Pointer Authentication)

● PAC: cryptographic signature in unused bits of pointer
● Can no longer forge code pointers => breaks ROP, JOP, …

0000002012345678 a827152012345678

; Authenticate function pointer in X3
; and call it. Clobbers X3 if signature
; is invalid, leading to crash
AUTIZA X3
BL X3

; Sign pointer in X3
; (Done during process
; initialization etc.)
PACIZA X3



Defeating PAC (Pointer Authentication)

● PAC: cryptographic signature in unused bits of pointer
● Can no longer forge code pointers => breaks ROP, JOP, …
● But really, arbitrary code execution isn’t necessary
● (Mostly) enough to call existing functions and method

NSInvocation* invocation = [NSInvocation invocationWithMethodSignature:sig];
[invocation setTarget:foo];
[invocation setSelector:@selector(bar)];
[invocation invoke];
// [Foo bar] called
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iMessage Hardening ~ 2019-2020

https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html

https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
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Blastdoor (iOS 14, ~ mid 2020)

● Re-architectured iMessage processing
● Idea: complex parsing now happens in 

a tightly sandboxed process: 
MessagesBlastDoorService

● High-level logic implemented in Swift
● Also breaks crash oracle: crashing 

process (BlastDoor) is not the process 
sending the delivery receipt (imagent)

imagent

BlastDoor

imagent

Incoming iMessage
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ForcedEntry ~ 2021

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
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Attack Surface?



imagent

BlastDoor

imagent

Incoming iMessage

IMTranscoderAgent

attachments
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https://en.wikipedia.org/wiki/File:Rotating_earth_(large).gif
https://commons.wikimedia.org/wiki/User:Marvel
https://creativecommons.org/licenses/by-sa/3.0/deed.en


[IMGIFUtils copyGifFromPath:toDestinationPath:error]

objc_msgSend(a1,

            sel_readFileProperties_fromImageSource_withUpdatedLoopCount_error_,

            &v36,

            v16,

            0LL,    // New loop counter to use

            &v35);

Implementation of infinite loop GIF edit in iMessage:



20: IMSharedUtilities  copyGifFromPath:toDestinationPath:error:

19: IMSharedUtilities  readFileProperties:fromImageSource:withUpdatedLoopCount:error:

18: IMSharedUtilities  readFileProperties:fromImageSource:error:

17: ImageIO            _CGImageSourceCopyProperties

16: ImageIO            IIOImageSource::copyProperties

15: ImageIO            IIOImageSource::getProperties

14: ImageIO            IIO_Reader_PDF::updateSourceProperties

13: ImageIO            CreateSessionPDFRef

12: CoreGraphics       _CGPDFDocumentCreateWithProvider

11: CoreGraphics       _pdf_xref_create

10: CoreGraphics       _CGPDFXRefStreamCreate

 9: CoreGraphics       _xref_stream_create

 8: CoreGraphics       _xref_stream_read_section

 7: CoreGraphics       _CGPDFSourceGetc

 6: CoreGraphics       _CGPDFSourceRefill

 5: CoreGraphics       _jbig2_filter_refill

 4: CoreGraphics       read_bytes

 3: CoreGraphics       JBIG2Stream::reset

 2: CoreGraphics       JBIG2Stream::readSegments

 1: CoreGraphics       JBIG2Stream::readTextRegionSeg

 0: CoreGraphics       JBIG2Stream::readTextRegionSeg

iMessage

ImageIO

CoreGraphics

XPdf

alter 
loop-count 

property of an 
animated GIF

process 
arbitrary JBIG2
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Iceberg photomontage by Uwe Kils is licensed under CC BY-SA 3.0

https://de.wikipedia.org/wiki/Datei:Iceberg.jpg
https://en.wikipedia.org/wiki/User:Kils
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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A JBIG2 heap overflow

Guint numSyms;

numSyms = 0;

for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

   if (seg->getType() == jbig2SegSymbolDict) {

     numSyms += ((JBIG2SymbolDict *)seg)->getSize();

   }

   // ...

}

// ...

syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *));
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vtable

Guint segNum int w

int h int line

Guchar* data

corruption

JBIG2Bitmap

segments GList 
backing buffer

Unbounding JBIG2 canvas with a heap overflow



JBIG2 compression



JBIG2 compression



JBIG2 refinement operations

substituted original

X
O
R

=

difference



JBIG2 refinement operations: logic gates

OR

AND

XOR

XNOR



JBIG2 refinement operations: NAND

AND
XORA

B

1 Z



JBIG2 refinement operations: NAND

AND
XORA

B

1 Z

source: https://www.nand2tetris.org/

https://www.nand2tetris.org/


JBIG2 refinement operations: NAND

AND
XORA

B

1 Z

source: 
https://www.nand2IMTranscoderAgentSandboxEscape.org/

https://www.nand2tetris.org/


JBIG2 refinement operations: ripple carry adder

OR
AND

XOR

AND

XOR

Cout

Z
Cin

Cin

B

B

A

A



Why is ASLR a Problem?

● Need communication channel between target process and exploit logic
● Now: Exploit logic implemented in JBIG2 VM => runs inside target process
● Explicit communication channel with attacker machine not necessary

(Abstract) Payload 
with offsets

(Concrete) payload 
with addressesTarget Process

1. Leak valid address
2. “Instantiate” payload

3. Deliver payload
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Conclusion

● The right mitigations/hardenings can make a big difference

● Still: should assume memory corruption bugs to be exploitable unless

proven otherwise (this is hard…)

● Sometimes not trivial to reason about where code executes

● Look out for hidden attack surface


