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Abstract

Web Browsers have become a ubiquitous application on desktop operating systems as well
as on mobile platforms, making them critical to users’ security on the web. In particular
JavaScript interpreters, which allow for an interactive experience on the web, have come
into focus for attackers as they commonly provide powerful exploitation primitives that
enable the compromise of the hosting process with a single vulnerability. As such there is
an interest to detect these vulnerabilities in an automatic fashion.

Besides static analysis, fuzzing is commonly used to automatically detect software vul-
nerabilities. Here, randomly generated input is repeatedly provided to the application as
input in the hopes of triggering a faulty condition. Recently, guided fuzzing approaches
have shown promising results and often outperform classic mutation-based or generative
approaches. Guided fuzzing uses feedback, often in the form of coverage information,
collected during execution to score the produced samples. New samples will then be
produced by mutating previous samples that were deemed interesting. This enables the
fuzzer to eventually generate complex inputs that reach deep into the targets processing
logic.

The goal of this work is then to apply the guided fuzzing approach to script interpreters.
This requires defining semantically useful mutations on program code. However, in contrast
to existing approaches that mutate syntactical elements such as the textual representation of
code or a syntax tree, mutations are defined on a newly designed intermediate language (IL)
on which, due to its restricted form, mutations of control and data flow can easily be
performed. This reflects the fact that the syntactical properties of a program are generally
irrelevant. Further, the proposed system is able to generate semantically valid samples
with a high probability. This is important as it avoids the need to wrap generated code
into try-catch constructs which can negatively affect the runtime behavior.

An initial implementation of the proposed system was able to identify exploitable, previously
unknown security vulnerabilities inside the JavaScript engines of the Safari and Firefox
web browsers as well as numerous crashes and internal assertion failures across different
engines.
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Zusammenfassung

Die Sicherheit von Web Browsern ist nach wie vor kritisch für Endnutzer des Internets.
Software-Schwachstellen in diesen können ausgenutzt werden, um unerlaubt Zugriff auf
das jeweilige Endgerät, und damit auf private Daten der Nutzer zu erlangen. Insbesondere
JavaScript Interpreter, welche JavaScript Programme ausführen um interaktive Webseiten
zu ermöglichen, sind in den Fokus von Sicherheitsforschern gerückt. Dies ist unter anderem
der hohen Komplexität der Software sowie der Tatsache, dass viele der dort gefundenen
Schwachstellen zuverlässig ausnutzbar sind, zuzuschreiben. Aus diesem Grund besteht ein
Interesse, diese Art von Programmierfehler zu finden und zu beheben.

Generell lassen sich Software-Schwachstellen sowohl durch manuelle Analyse des Quelltextes,
als auch mithilfe automatisierter Techniken auffinden. Letztere haben dabei den Vorteil,
dass sie besser skalierbar sind. Diese Arbeit widmet sich daher automatisierten Ansätzen,
insbesondere dem Fuzzing. Hierbei werden wiederholt zufällige Eingabedaten für das
getestete Program erstellt und zur Verarbeitung an das Program gegeben. Die Ausführung
des Programmes wird anschließend auf eventuell auftretendes Fehlverhalten, wie z.B.
ungültige Speicherzugriffe, überwacht. Grundsätzlich gibt es zwei weit verbreitete Fuzzing
Ansätze: Mutationsbasierte Ansätze sowie generative Ansätze. Bei Ersteren werden kleine
Änderung, wie z.B. das Kippen einzelner Bits, auf Eingaben aus einem bestehenden
Korpus an Daten angewendet, um aus diesen neue Eingaben zu erzeugen. Bei generativen
Ansätzen wird dagegen jedes mal eine neue Eingabe erzeugt. Dies kann z.B. mithilfe einer
vordefinierten Grammatik passieren.

In dieser Arbeit wird ein neuer Ansatz für das Fuzzing von JavaScript Interpretern
vorgestellt. Er beruht darauf, eine neue Zwischensprache, genannt FuzzIL, für JavaScript
zu entwickeln, auf welcher sich diverse Mutationen definieren lassen. Diese arbeiten
nicht wie bisherige Ansätze auf einem syntaktischen Level sondern auf einem Daten- und
Kontrollfluss Level. Diese Mutationen werden dann genutzt, um mithilfe des sogenannten
”Guided Fuzzing” Ansatzes, im Grunde einem genetischen Algorithmus, neue Eingaben zu
entdecken, welche vorher unerreichte Teile des getesteten Programmes abdecken. Neben
dem Übersetzen von FuzzIL in die Zielsprache sind weitere Schritte notwendig. Diese
beinhalten das Messen von Programmabdeckung um eine Metrik für die Güte eines erzeugten
Programmes zu haben, sowie das Minimieren von interessanten Programmen. Dies ist
nötig da die definierten Mutationen ein Program nur vergrößern können, nie verkleinern.

Der beschriebene Ansatz wurde in der Swift Programmiersprache umgesetzt und ausgew-
ertet. Es gelang dabei vier bisher unbekannte Schwachstellen in den weit verbreiteten
Web Browsern Safari und Firefox zu entdecken. Weiterhin wurden mehrere fehlerhafte
Konditionen in diesen und weiteren JavaScript Interpretern gefunden.
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1. Introduction

Web Browsers continue to be critical for end user’s security on the web, as vulnerabil-
ities therein can be exploited by attackers to gain access to end user devices and thus
personal data stored on them. Specifically JavaScript engines have moved into the focus
of security researchers for various reasons: first, they are often implemented in memory
unsafe languages for performance reasons, making them susceptible to memory corruption
vulnerabilities. Second, they have become highly complex software, increasing the chances
for programming mistakes. This is in part due to the continuing race for performance
among browser vendors. As an example, they commonly contain multiple different just-
in-time (JIT) compilers which compile JavaScript code to machine code at runtime to
boost performance. Last but not least, vulnerabilities found in these engines often provide
powerful exploitation primitives, allowing the compromise of the hosting process with a
single vulnerability despite modern exploit mitigation technologies.

A public example of an attack featuring security vulnerabilities in a web browser is the
Pegasus spyware1. Here, a vulnerability in the JavaScript engine powering the Safari
browser, as well as two vulnerabilities in the iOS system, were exploited to remotely gain
control of the device. Furthermore, the yearly pwn2own2 and similar contests continue to
demonstrate the feasibility of such attacks. As such, there is a clear incentive to discover
these types of vulnerabilities.

Besides manual code auditing and static analysis, fuzz-testing, or fuzzing, is applicable
to detect programming errors and thus software vulnerabilities. During fuzzing, random
input is produced and provided to the tested program for processing. The program’s
execution is then monitored for misbehavior such as memory access violations. As fuzzing
works in an automatic fashion and is easy to scale it remains a relevant research topic.
Recently, guided fuzzing, as for instance implemented by afl [Zal15], has been explored as
well. Here, feedback in the form of coverage information is collected and used to score the
produced samples. Samples that increase coverage are then kept for future mutations while
other samples are discarded. This enables the fuzzer to uncover vulnerabilities deep in

1https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
2https://www.thezdi.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn

https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://www.thezdi.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn


2 1. Introduction

the programs processing logic. However, it is non-trivial to apply guided fuzzing to script
interpreters as it requires the definition of sensible mutations on program code.

This work aims to research how guided fuzzing can be implemented for scripting engines.
One key contribution lies in the proposal of new mutations for program code which work on
a different level, closer to the data and control flow of a program, than existing mutational
approaches which usually target syntactical elements such as the abstract syntax tree
(AST) of a program.

This work is then structured as follows. First, chapter 2 provides a technical context for
this work. In particular, an overview of web browsers and JavaScript engines, as well as
commonly found vulnerabilities, is provided. Furthermore, fuzz-testing, a technique to
discover software defects automatically, is introduced. Afterwards, chapter 3 defines the
goal of this work and presents a list of requirements which the proposed system should meet
to achieve said goal. Chapter 4 then introduces the newly proposed approach for guided
fuzzing of JavaScript engines and is followed by chapter 5, which discusses some aspects
of the implementation of the proposed system. The presented approach is evaluated in
chapter 6, where a number of previously unknown security vulnerabilities will be discussed.
Finally, chapter 7 discusses relevant related work and is followed by chapter 8, which
summarizes this work and provides suggestions for future improvements.



2. Background

This chapter aims to give an introduction to web browsers and JavaScript engines from a
security point of view as well as fuzz-testing, a technique used for automatic vulnerability
discovery.

The chapter begins with a brief overview of a web browser, then continues with a discussion
of the major components that make up a JavaScript engine. Next, common vulnerabilities
in JavaScript engines will be discussed at the example of CVE-2016-4622 and CVE-2018-
4233, two vulnerabilities discovered through manual code auditing. Afterwards, fuzz-testing
will be introduced. The two common approaches to fuzz-testing, namely mutation-based
and generative fuzzing will be described and finally guided fuzzing, a scheme that involves
feedback of some sort to produce complex input samples, will be discussed.

2.1 Web Browser Overview

A web browser’s task is to retrieve and display resources such as HTML web pages identified
by a URL while also processing user input. To allow for an interactive web experience,
web browsers commonly support scripting of web pages through the JavaScript language.

A typical web browser today is made up of different processes: a browser process and one
or more renderer processes, as well as possibly additional processes for managing resources
such as the network or the graphics processing unit (GPU). The browser process displays
the user interface and manages the renderer processes, while the renderer processes parse
HTML, CSS, a multitude of media formats such as images and videos, and various other
data formats, and combine them into a document which is then presented to the user.
JavaScript needs to be parsed and executed as well. In addition to the core language
features, a wide range of browser APIs are available to JavaScript code to allow web
developers to interact with the current document, to use web databases, to retrieve data
over the network, and more. As some features, for instance web databases, require persistent
storage, they are managed by the browser process and made available to renderer processes
through IPC.

From a security standpoint, the renderer process is the most exposed component of a
browser as it handles a multitude of untrusted and potentially complex inputs. As such it
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is commonly sandboxed, meaning it has limited access to sensitive data such as a user’s
personal data. For that reason a second vulnerability in a component that is not sandboxed,
but which is reachable from the sandboxed process, is commonly needed to gain full access
to the system. This vulnerability could be inside the browser process or the operating
system. However, initial code execution inside the renderer process is in most cases a
necessity to exploit these vulnerabilities and escalate privileges. Moreover, a compromised
renderer is in some cases able to perform cross-origin attacks, also known as universal cross-
site scripting (UXSS). With these, an attacker is able to gain access to web authentication
data, mainly cookies, and subsequently gain access to a victims online activities such as
emails, cloud storage, social networks, banking, and more. As such, the integrity of the
renderer process remains critical to the overall system security.

While clearly not the only relevant attack surface, JavaScript engines are becoming the
preferred way to gain initial code execution inside a renderer process. This is partially
due to the powerful exploitation primitives gained from vulnerabilities herein, as further
discussed in 2.3. As such the focus of this work lies in detecting vulnerabilities in the
JavaScript engine itself, although the approach can be generalized to target web APIs
reachable through JavaScript code.

2.2 JavaScript Engine Overview

The task of a JavaScript engine is to parse and execute JavaScript code. In contrast to
most other scripting environments, a JavaScript engine embedded in a web browser is
expected to safely process untrusted scripts. Further, it is developed with an extensive
focus on execution performance to enable interactive, client-side web applications. As is
often the case, increased performance comes with increased complexity of the code base,
which in turn leads to programming mistakes that are sometimes security critical.

The following JavaScript engines are readily available as open source projects and power
the most prominent web browsers to date:

• Spidermonkey, the engine inside the Firefox browser, is available as part of the gecko
browser engine. It is developed using mercurial1, but a git mirror is also available2

• JavaScriptCore (JSC), the engine inside WebKit and thus Safari, is available as part
of the WebKit project, which is developed using subversion3. A git mirror is available
as well4

• V8, the engine inside the Chrome browser, is available as part of the Chromium open
source project5 as well as standalone6

• Chakra, the engine inside the Edge browser, is available as a standalone project on
github7

1https://hg.mozilla.org/mozilla-central/
2https://github.com/mozilla/gecko-dev
3https://trac.webkit.org
4https://github.com/WebKit/webkit
5https://chromium.googlesource.com/
6https://github.com/v8/v8
7https://github.com/Microsoft/ChakraCore

https://hg.mozilla.org/mozilla-central/
https://github.com/mozilla/gecko-dev
https://trac.webkit.org
https://github.com/WebKit/webkit
https://chromium.googlesource.com/
https://github.com/v8/v8
https://github.com/Microsoft/ChakraCore
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A modern JavaScript engine consists at least of the following components: a parser and
bytecode compiler, an interpreter and possibly one or more Just-in-Time (JIT) compilers,
a runtime environment, and a garbage collector. Each of them will be discussed next.

2.2.1 Parser and Bytecode Compiler

The parser and bytecode compiler are responsible for converting JavaScript code from
its source code representation to an engine-specific bytecode which is then used by the
interpreter and JIT compiler. Parsing happens by first tokenizing the input stream, then
constructing an abstract syntax tree (AST). The AST is subsequently compiled to bytecode
by a bytecode compiler [AU77].

The bytecode format differs between the engines. While some engines such as Spidermonkey
use a stack-based virtual machine, other engines, for example v8, use a register-based
virtual machine. As such, their bytecode format is fundamentally different. However, one
property common to the different bytecode formats is that they are typically untyped:
the bytecode operates on dynamically-typed values which contain both type- and value
information. During execution of the bytecode in an interpreter, different actions will then
be performed depending on the runtime type of the operands.

Another common property of the resulting bytecode is that it is usually unoptimized. This
is due to several reasons: first, it is desirable to keep the overall startup time as low as
possible, forbidding the use of costly optimizations. Second, many optimizations require
type information, which is not available at this point due to the dynamically-typed nature
of the JavaScript language.

2.2.2 Interpreter

The task of an interpreter is to consume the bytecode and execute it. As the bytecode is
custom to each engine, so is the interpreter. Interpretation happens by fetching the next
bytecode instruction from the currently executing code and dispatching it to a handler for
the bytecode operation. An example of a bytecode handler for the the ADD operation in
the Spidermonkey engine is shown in listing 2.1. The virtual machine is stack based. As
such the operation essentially pops the first two values from the stack, adds them together,
and places the result on the stack again.

1 CASE(JSOP ADD)
2 {
3 MutableHandleValue l v a l = REGS. stackHandleAt (−2);
4 MutableHandleValue r v a l = REGS. stackHandleAt (−1);
5 MutableHandleValue r e s = REGS. stackHandleAt (−2);
6 i f ( ! AddOperation ( cx , l va l , rva l , r e s ) )
7 goto e r r o r ;
8 REGS. sp−−;
9 }

10 END CASE(JSOP ADD)

Listing 2.1: The handler code for the JSOP_ADD bytecode operation inside the Spidermonkey
interpreter.
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While interpretation of bytecode is fairly slow, in part due to the unoptimized nature of the
bytecode as previously discussed as well as the dispatching overhead for every operation,
the initial startup time is very low. As such, for code that is only executed once or a few
times, it is overall better to execute it in the interpreter, as the overhead of compilation
would far outweigh the faster execution speed of the resulting machine code. However, if a
unit of JavaScript code is repeatedly executed by the application it is worth optimizing
that code. This is the job of a JIT compiler. As current JIT compilers usually require type
hints to be able to produce optimized machine code, it is also the job of the interpreter
to collect type profiles during execution of the bytecode. These commonly augment the
bytecode with previously seen input types for each bytecode operation. As an example,
a type profile for the Spidermonkey bytecode would, for an operation such as JSOP_ADD,
shown in listing 2.1, associate one set of observed types with the first input to the operation
and a second set of types with the second input.

2.2.3 JIT Compiler

A JIT compiler acts as an alternative to an interpreter for script execution. It, too, usually
consumes bytecode by the parser, as well as type profiles gathered during execution by the
interpreter. Having access to both, it converts the bytecode to optimized machine code
which can be executed directly on the host CPU.

As JIT compilers are crucial to execution performance, they are the subject of intensive
research. Many implementations and key mechanisms have been discussed, e.g. by Gal et al.
[GES+09] and Hackett et al. [HG12] who presented mechanisms used by the Spidermonkey
JIT compiler to generate optimized machine code and deal with missing type information.
Moreover, Hölzle et al. [HCU91] introduced polymorphic inline caches, a broadly used
mechanism to speed up polymorphic operations in dynamic language interpreters and at
the same time gather type information for the JIT compiler by caching results of previous
executions. Further, numerous online resources on the topic were published, such as can
for example be found on the github page for the turbofan compiler8, the JIT compiler
inside v8. What follows is a brief, simplified, and high-level summary of the inner workings
of current JIT compilers for the JavaScript language.

A JIT compiler will commonly first convert the bytecode to another custom intermediate
representation. This IR is often graph based to facilitate various optimizations that are
later performed on it. In addition, most engines currently use a static single assignment
(SSA) form [CFR+91] to further simplify code analysis and optimization.

One essential mechanism that allows generation of performant machine code for JavaScript
and dynamically typed languages in general are speculations: equipped with type profiles
from the interpreter, the compiler speculates that the same types will be used in the
future. It will then guard these assumptions with runtime guards: small fragments of
code that perform an inexpensive type check and bailout if the check fails, in which case
execution will continue in a more generic execution tier such as the interpreter. These type
guards essentially convert the previously untyped code into strictly typed code, which can
subsequently be optimized in a similar fashion as other strictly-typed languages such as
C++ or Java. This mechanism is shown in listings 2.2, 2.3, and 2.4 with an imaginary
bytecode and compiler IR format. Here, the function to be compiled, which is shown in

8https://github.com/v8/v8/wiki/TurboFan

https://github.com/v8/v8/wiki/TurboFan
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listing 2.2, is invoked with integers as arguments. This is captured by the interpreter in
type profiles associated with the bytecode as shown in listing 2.3. Based on those, the
JIT compiler speculates that the same types will be used in the future and guards that
assumption with two type checks. Afterwards, the compiler can use fast, specific operations,
such as the addition of two integers, instead of slow, generic ones that cover all possible
scenarios of different types. This can be seen in listing 2.4. The integer addition used in
this example could well be implemented with a single machine instruction instead of the
generic addition operation as defined by the language specification9.

1 func t i on add (a , b) {
2 return a + b ;
3 }
4
5 f o r ( l e t i = 0 ; i < 10000 ; i++) {
6 add ( i , 4 2 ) ;
7 }

Listing 2.2: Example for the compilation of a JavaScript function by a JIT compiler.

1 func t i on add :
2 PushArg arg0 ; observed types : { I n t e g e r }
3 PushArg arg1 ; observed types : { I n t e g e r }
4 Add ; observed types : { I n t e g e r } , { I n t e g e r }
5 Return

Listing 2.3: Exemplary interpreter bytecode with type profile for the JavaScript code given
in listing 2.2.

1 func t i on add :
2 v0 = LoadArgument 0
3 CheckI s Integer v0
4 v1 = LoadArgument 1
5 CheckI s Integer v1
6 v2 = IntegerAdd v0 , v1
7 Return v2

Listing 2.4: Exemplary compiler IR for the bytecode given in listing 2.3. The compiler used
the type profiles to emit type checks and a specialized instruction to perform an integer
addition.

It is not uncommon for an engine to have multiple levels of JIT compilers. These correspond
to different optimization levels: the early JIT compilers perform less optimizations, thereby
produce machine code faster. The late JIT compiler stages perform more optimizations,
thereby generating faster machine code. A unit of code may be recompiled by a higher

9https://www.ecma-international.org/ecma-262/8.0/#sec-addition-operator-plus

https://www.ecma-international.org/ecma-262/8.0/#sec-addition-operator-plus


8 2. Background

level JIT compiler when its execution count reaches another threshold. JavaScriptCore,
the engine inside WebKit currently features three different JIT compilers in addition to an
interpreter. V8, the engine inside the Chrome browser, on the other hand, only uses one
JIT compiler and one interpreter.

2.2.4 The Runtime

The runtime environment provides algorithms and data structures needed during the
execution of JavaScript code as well as a number of builtin objects and functions as dictated
by the language specification10. Examples of the former include the implementation
of JavaScript values, objects, strings, and arrays which are defined by the language
specification, as well as internal helper objects such as hash maps. Examples for builtin
objects and functions include the mathematical functions that are defined on the global
Math object or functions related to arrays installed on the array prototype, which are thus
accessible to every regular array object and through the prototype property on the global
Array object.

2.2.5 Garbage Collector

As JavaScript frees the programmer of the responsibility to return allocated memory back
to the system, it requires a garbage collector (GC) to detect and reclaim unused memory.

Most high-performance garbage collector systems are based on the mark-and-sweep algo-
rithm [JL96], which operates in two phases. First, during the periodic marking phases,
the whole graph of reachable objects is scanned. Then, during the sweeping phase, every
memory allocation which was not visited, implying that it is a dead object, is freed and
returned to the allocator.

Various extensions of this core algorithm exist and are in use today. One key improvement
lies in concurrent marking to avoid noticeable pauses in the application caused by ”stop-the-
world” garbage collection. An example of such a collector was suggested by Doligez et al.
[DL93, DG94]. Modern collectors such as Riptide, the collector used in JavaScriptCore11,
further strive for a minimal amount of application interrupts due to garbage collection
through parallelism if multiple CPU cores are available.

Another variant, described by Baker [BJ78] and later used by Halstead to implement
Multilisp [HJ84], uses two memory regions to improve sweeping: an active one in which
new allocations are placed and an inactive one. After marking has finished, live objects
are ”evacuated” to the inactive region, after which the first region is declared free and the
active and inactive region are swapped. This algorithm performs well if most allocated
objects are dead, as it has zero cost for cleaning up dead objects. Orinoco the collector
used by v812, uses a scheme similar to Halstead’s collector.

2.3 JavaScript Engine Vulnerabilities

JavaScript engines have come into focus of security researchers in the last years. There are
several reasons for that. For one, the need for high performance script execution on the web

10https://www.ecma-international.org/ecma-262/8.0/#sec-ecmascript-standard-built-in-objects
11https://webkit.org/blog/7122/introducing-riptide-webkits-retreating-wavefront-concurrent-garbage-collector/
12https://v8.dev/blog/orinoco-parallel-scavenger

https://www.ecma-international.org/ecma-262/8.0/#sec-ecmascript-standard-built-in-objects
https://webkit.org/blog/7122/introducing-riptide-webkits-retreating-wavefront-concurrent-garbage-collector/
https://v8.dev/blog/orinoco-parallel-scavenger
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has resulted in complex engine implementations, an ideal environment for vulnerabilities.
Second, the great amount of control over the engine’s internal state e.g. in the form of
memory allocations, together with the powerful exploitation primitives gained from typical
vulnerabilities, often make it possible to bypass all modern exploit mitigations with a single
vulnerability.

While ”classic” vulnerabilities such as buffer overflows or use-after-frees are now rarely
found in scripting engines, complex, domain specific vulnerabilities have mostly replaced
them. In an attempt to categorize the commonly found issues in scripting engines, the
following list has been created. This list makes no claims of completeness, but rather aims
to provide a quick overview of common vulnerabilities discovered in recent years.

• Integer-overflow related issues, usually leading to out-of-bounds access into a memory
buffer. Examples include CVE-2017-7092, CVE-2017-2536, and CVE-2018-6065.

• Issues due to unexpected callbacks in the implementation of builtin functions, such
as CVE-2017-5030, CVE-2016-7189, and CVE-2016-4622, which will be discussed
further in section 2.3.1.

• Use-after-free issues due to bugs that lead to the garbage collector not finding an
object in the marking phase. Example of this type of bug include CVE-2017-2491
and CVE-2018-4192.

• Vulnerabilities that occur due to an engine-internal object or function being ”leaked”to
application code through some kind of logic issue. Examples include CVE-2016-6754,
CVE-2017-2446, and CVE-2018-4299.

• Vulnerabilities stemming from incorrect optimizations in a JIT compiler. To this
date, vulnerabilities have at least been found in the implementation of bounds-check
elimination (e.g. CVE-2015-0817, CVE-2017-2547, and CVE-2018-0769), escape
analysis (e.g. CVE-2017-5121, CVE-2018-0860), and type-check elimination (e.g.
CVE-2017-11802, CVE-2018-17463, and CVE-2018-4233, discussed in more detail in
section 2.3.2).

In addition to the described vulnerability classes, there exist a large number of miscellaneous
vulnerabilities that currently cannot easily be assigned to any category. Future publications
and research of JavaScript engine vulnerabilities might warrant the introduction of further
categories.

The following two sections will describe two rather typical vulnerability classes in more
detail.

2.3.1 CVE-2016-4622

The first vulnerability discussed here is CVE-2016-4622, a vulnerability in JavaScriptCore
that is caused by an unexpected callback.

The vulnerability was present in the implementation of the %Array.prototype.slice

builtin function in JavaScriptCore, the engine powering WebKit. The vulnerable source
code is shown in listing 2.5. The function proceeds roughly as follows: first it retrieves
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the length of the input array in line 9. Next it retrieves the arguments, converts them to
integers, and clamps them to the range [0, length) in line 13 and 14. Finally, if the fast
path can be used, it copies the bytes between begin and end into a newly created array
without additional bounds checking in line 21 and 22. The issue here is that the conversion
of the arguments to integers can execute JavaScript code of the attackers choosing due to
JavaScript’s conversion rules13. In particular, a function installed as the valueOf property
on one of the arguments will be invoked at this point. In this callback, an attacker could
now modify the length of the array, resulting in an out-of-bounds access when the function
resumes. Listing 2.6 shows proof-of-concept code to trigger the bug. Execution of this code
on a vulnerable instance yields an array with special double values such as 2.12199579146e-
313. These correspond to pointer values that were read out-of-bounds behind the array.
The resulting primitive can be used to construct a remote code execution exploit14.

1 EncodedJSValue JSC HOST CALL arrayProtoFuncSl i ce ( ExecState ∗ exec )
2 {
3 JSObject∗ th i sObj = exec−>th i sVa lue ( )
4 . toThis ( exec , Str ictMode )
5 . toObject ( exec ) ;
6 i f ( ! th i sObj )
7 return JSValue : : encode ( JSValue ( ) ) ;
8
9 unsigned l en = getLength ( exec , th i sObj ) ;

10 i f ( exec−>hadException ( ) )
11 return JSValue : : encode ( j sUnde f ined ( ) ) ;
12
13 unsigned begin = argumentClampedIndex ( exec , 0 , l en ) ;
14 unsigned end = argumentClampedIndex ( exec , 1 , len , l en ) ;
15
16 . . . ;
17
18 i f ( /∗ can use f a s t path ∗/ && isJSArray ( th i sObj ) ) {
19 i f ( JSArray∗ r e s u l t =
20 asArray ( th i sObj)−> f a s t S l i c e (∗ exec , begin , end − begin ) )
21 return JSValue : : encode ( r e s u l t ) ;
22 }
23 }

Listing 2.5: The vulnerable implementation of %Array.prototype.slice in JavaScriptCore,
slightly modified for readability.

13https://www.ecma-international.org/ecma-262/8.0/index.html#sec-type-conversion
14https://github.com/saelo/jscpwn

https://www.ecma-international.org/ecma-262/8.0/index.html#sec-type-conversion
https://github.com/saelo/jscpwn
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1 var a = [ ] ;
2 f o r (var i = 0 ; i < 100 ; i++) {
3 a . push ( i + 0 . 1 2 3 ) ;
4 }
5
6 var end = {
7 valueOf : function ( ) {
8 a . l ength = 0 ;
9 return 10 ;

10 }
11 } ;
12
13 a . s l i c e (0 , end ) ;
14 // [0.123,1.123,2.12199579146e-313,0,0,0,0,0,0,0]

Listing 2.6: Proof-of-concept code to trigger CVE-2016-4622.

2.3.2 CVE-2018-4233

The next vulnerability presented here is CVE-2018-4233, a JIT compiler optimization bug
in the JavaScriptCore engine.

The optimization in question, often called redundancy elimination, is supposed to detect
redundant type checks in the IR and eliminate those. Listing 2.7 provides an example
of a redundant type check. Here, the second type check is redundant as the type of the
argument cannot change between the first and the second check. Eliminating redundant
type checks can be achieved by keeping track of previous checks on each path through the
control flow graph and removing subsequent checks that are fully subsumed by the existing
ones. Special care has to be taken as the types of objects can sometimes change in between
two checks as the result of side effects. In these cases, the seemingly redundant check
could not be safely removed. Such a situation is depicted in Listing 2.8. Here, the second
CheckHasProperty operation in line 6 is still required as the type of the argument object
can change due to side effects. In particular, the ToNumber operation in line 4 could trigger
the execution of arbitrary JavaScript code in a similar way as described in 2.3.1, which in
turn could change the type of the object by e.g. removing the property ”foo”. To detect
these situations, the compiler requires knowledge about the side effects all operations in its
IR. Failure to capture the side effects of an operation will lead to the removal of a type
check and subsequently to a type confusion vulnerability.
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1 v0 = LoadArgument 0
2 CheckI s Integer v0
3 v1 = IntegerAdd v0 , 42
4 CheckI s Integer v0
5 v2 = IntegerMul v0 , 42

Listing 2.7: An example for redundant type checks in an (imaginary) compiler intermediate
representation.

1 v0 = LoadArgument 0
2 CheckHasProperty v0 , ”foo ”
3 v1 = LoadProperty v0 , ”foo ”
4 v2 = ToNumber v1
5 v3 = NumberAdd v2 , 1
6 CheckHasProperty v0 , ”foo ”
7 StoreProperty v0 , ”foo ” , v3

Listing 2.8: An example for a type check that seems redundant but is actually required as
the type of the input can change due to side effects of the ToNumber conversion.

Such an issue is the cause for CVE-2018-4233. In particular, the compiler assumed that
the CreateThis operation, responsible for creating the new object in a constructor call,
would not result in any side effects. However, by wrapping the constructor in a Proxy15,
it is indeed possible to execute arbitrary JavaScript code during the execution of the
CreateThis operation. By changing the type of an argument object, in this case from an
array of floating-point numbers to an array of JavaScript values, it is possible to achieve a
type confusion in the emitted machine code.

Proof-of-concept code for this vulnerability is shown in listing 2.9. Here, the JIT compiler
assumes that the constructor function always receives an array with doubles as first
argument. It guards this assumption with a type check at the beginning of the emitted
machine code. However, the CreateThis operation happens after the type check of the
argument object and invokes JavaScript through a Proxy callback when the prototype

property of the constructor is retrieved. Changing the type of the argument array in the
callback then causes a type confusion when the constructor function resumes and accesses
the array.

As a result of executing the proof-of-concept code, the double value 3.54484805889626e-310,
which is stored as 0x414141414141 in IEEE 754 format, is wrongly used as a pointer,
resulting in an attacker-controlled crash due to an access violation when dereferencing the
address 0x414141414141. A full exploit is available as well16.

15https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Proxy
16https://github.com/saelo/cve-2018-4233

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://github.com/saelo/cve-2018-4233
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1 function Constructor ( a , v ) {
2 a [ 0 ] = v ;
3 }
4
5 var t r i g g e r = fa l se ;
6 var arg = null ;
7 var handler = {
8 get ( target , propname ) {
9 // Potentially change the type of |arg| from

10 // array with doubles to array with anything.

11 i f ( t r i g g e r ) {
12 arg [ 0 ] = {} ;
13 }
14 return t a r g e t [ propname ] ;
15 } ,
16 } ;
17 var EvilProxy = new Proxy ( Constructor , handler ) ;
18
19 f o r (var i = 0 ; i < 100000; i++)
20 new EvilProxy ( [ 1 . 1 , 2 . 2 , 3 . 3 ] , 1 3 . 3 7 ) ;
21 }
22
23 t r i g g e r = true ;
24 arg = [ 1 . 1 , 2 . 2 , 3 . 3 ] ;
25 new EvilProxy ( arg , 3.54484805889626 e−310);
26 arg [ 0 ] ; // Crashes here with an access violation

Listing 2.9: Proof-of-concept code to trigger CVE-2018-4233.

2.4 Fuzzing Basics

Fuzz-testing or fuzzing describe a group of related techniques for automatic vulnerability
discovery. The central idea is that randomly generated input is repeatedly given to the
application as input. The application is then monitored for faulty conditions such as
memory access violations during processing of the generated input [SGA07].

Fuzz-testing approaches can broadly be divided into two main categories: generative
approaches and mutation-based ones. These differ in the way they produce input data.
Each of them will be discussed in more detail next.

2.4.1 Generative Fuzzing

In generative fuzzing, each input file is generated from scratch, often following a set of
predefined rules. Commonly, grammar-based approaches are used, in which the set of all
inputs is first defined through a context-free grammar [GKL08]. The generation of new
inputs is then achieved by taking random production rules starting from an initial ”root”
production.

An example grammar, specified in ABNF form [CO08], for a very limited subset of the
JavaScript language is given in listing 2.10. A simple generative fuzzer would start with the



14 2. Background

Program production rule and choose random productions until a certain recursion depth is
reached, after which point it will always choose a terminating rule if available. As such, for
the grammar given in listing 2.10, a sample such as "var v42 = 7 + 3 + v13;" could be
produced.

1 program = ∗ statement
2 statement = var i ab l e−d e c l a r a t i o n ”; ”
3 statement =/ expr e s s i on ”; ”
4 var i ab l e−d e c l a r a t i o n = ”var ” i d e n t i f i e r ”=” expr e s s i on
5 exp r e s s i on = intege r− l i t e r a l
6 exp r e s s i on =/ add−exp r e s s i on
7 exp r e s s i on =/ i d e n t i f i e r
8 add−exp r e s s i on = expr e s s i o n ”+” expr e s s i on
9 in t ege r− l i t e r a l = 1∗DIGIT

10 i d e n t i f i e r = ”v ” 1∗DIGIT

Listing 2.10: Example grammar in ABNF form for a subset of the JavaScript language.

One of the main benefits of generative fuzzing is that the resulting samples will always
be syntactically valid if the grammar is correct. Another benefit is the high degree of
control over the produced samples by the grammar engineer. This might enable her to
use domain-specific knowledge to tune the fuzzer by adding production rules for features
that have historically proven dangerous. However, without some form of code emulation, it
becomes hard to achieve semantic correctness of the generated samples. This is problematic
as a runtime exception would stop further processing of the generated code. As such, a
common solution is to wrap each generated statement or expression (or groups of such)
into a try-catch block so that execution continues even in the event of a runtime exception.

2.4.2 Mutation-based Fuzzing

The idea behind mutation-based fuzzing is to start with a set of known-good input files
and mutate those in a random manner. Possible mutations include bit and byte flipping,
incrementing and decrementing integer values, and the insertion of predefined, ”interesting”
integer and string values. Mutation-based approaches perform well for programs that parse
binary protocols, as mutations are relatively straightforward. However, input data which
contains checksum fields or similar integrity checks can pose problems as processing of the
generated input will often stop during integrity checking. A simple way to deal with these
issues is to either modify the target program to ignore the checksum or to recompute the
checksum after the mutations.

The success of mutation-based fuzzing is largely dependent on the quality of the initial
corpus as well as the type of mutations that are performed.

When targeting scripting languages, a main challenge is to define sensible mutations, as
bit-level mutations on the source code representation of the code are likely to result in
syntactically invalid programs, which will be rejected early on during parsing. One approach
is to mutate the AST which has successfully been implemented in the past, e.g. by Holler et
al. [HHZ12]. With this, syntactic correctness is easy to achieve. Semantic correctness, on
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the other hand, is not automatically achieved as a mutation of the AST could for example
result in a variable being used before it is defined. This problem can be tackled either
by using mutations that preserve semantic correctness in a majority of the cases, such as
pure insertions of existing code from other samples, or by using try-catch constructs as
previously described.

2.5 Guided Fuzzing

An extension to the basic fuzzing algorithm, in which the outcome of the generated samples
is largely ignored, is guided fuzzing. Here, some form of feedback about the produced
samples is used to improve future samples. This becomes easily possible when a mutation-
based fuzzing approach is used as basis. In that case, samples that receive positive feedback
will be kept for future mutations while ”uninteresting” samples will be discarded. In essence,
guided fuzzing is then a genetic algorithm: mutations are performed on samples from the
current generation and ”good” samples are kept for the next generation while others are
discarded.

To perform well, guided fuzzing approaches require the use of sensible mutations which
preserve the interesting features of existing samples while changing their semantic slightly.
Furthermore, guided fuzzing requires a metric to determine whenever a sample has triggered
”interesting” behavior and should thus receive positive feedback. A generic and broadly
used metric is edge coverage, in which case the algorithm is commonly referred to as
coverage-guided fuzzing. With edge coverage, a sample is determined ”interesting” if it
has discovered an edge in the control flow graph of the target program that has never, or
less often, been discovered before. As an example, consider the imaginative excerpt of the
control flow graph of a program given in listing 2.1. Assuming that previous samples caused
the path A->B->A->C->E to be taken, then a sample that triggers the path A->C->D->E will
be considered interesting and kept for future mutations as the edges CD and DE have never
been observed before. However, a sample that caused the path A->B->A->B->A->C->E to
be taken would not be considered interesting even though it resulted in a unique path
through the program.

The intention behind edge coverage are twofold. For one, it naturally achieves code coverage
of the target program as edge coverage subsumes basic block coverage. Additionally, it is
able to distinguish between different state transitions in the tested program while largely
avoiding issues like path explosion. As such, coverage-guided fuzzing is able to gradually
generate complex but valid inputs for the program under test. Pseudocode for the general
guided fuzzing algorithm is given in listing 2.11.

A popular tool that implements the coverage-guided fuzzing approach is afl [Zal15], which
has been able to discover a multitude of previously unknown vulnerabilities and serves as a
model for this work.
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Figure 2.1 An exemplary control flow graph.

1 l e t C be a corpus o f input samples
2 repeat i n d e f i n i t e l y :
3 l e t S be a random sample in C
4 l e t S ’ be the r e s u l t o f apply ing a random mutation to S
5 l e t R be the r e s u l t o f execut ing S ’
6 i f R r e s u l t e d in a crash :
7 save S ’ to d i sk
8 otherwi se i f R conta in s p r e v i o u s l y unseen edges :
9 mark new edges as seen

10 i n s e r t S ’ i n to C

Listing 2.11: The high-level guided fuzzing algorithm
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The chapter will define the goal of this work, then define a set of requirements that the
developed system should meet to achieve said goal.

3.1 Goal of this Work

As motivated in chapter 1, this work is aimed towards the automatic discovery of vulnera-
bilities in JavaScript engines based on fuzz-testing. We note that, to be successful, this
does not necessarily require the developed system to outperform competing approaches in
some way. Rather, it has to be able to detect different vulnerabilities than existing fuzzers.

Given the recent success of coverage-guided approaches, we consider coverage to be a useful
metric for interpreter fuzzing as well. As an example, JIT compiler engines generally require
special casing in various situations. These would be discoverable with a coverage guided
approach. Another benefit of coverage guidance is that specific components of the engine,
or the browser as a whole, can be targeted by adjusting the coverage feedback, e.g. so it
is only measured for the desired components. As such we believe that a coverage-guided
approach could be able to discover new vulnerabilities.

The goal of this work is thus to provide an implementation of a coverage-guided fuzzing
approach for JavaScript engines which is able to discover vulnerabilities inside the engine
such as the ones previously presented in section 2.3.

3.2 Requirements

To achieve the defined goal, a number of requirements were defined which the developed
approach had to satisfy.

First, we note that syntactically invalid programs will most of the time fail to reach past the
parsing stage of the engine. While there might well be vulnerabilities in the parser, it is a
relatively small and uncomplex component of the engine. As an example, in JavaScriptCore
as of April 2018, the parser made up only approximately 3% of the engine’s source code.
As such, a requirement is that all generated programs have to be syntactically correct
under all circumstances.
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Second, given the goal of guided fuzzing, it is necessary to define sensible mutations to
preserve most of the interesting features of existing samples during mutations. As the goal
is to detect defects in core components of the engine, such as JIT compilers, it is necessary
to define mutations that are able to change the control and data flow of a program, as that
is what is ultimately processed by these components.

Finally, we note that ad-hoc solutions for dealing with semantically invalid programs,
namely the use of try-catch constructs, influence the behavior of the engine, especially the
JIT compiler, which might lead to missed vulnerabilities. We were able to confirm this
suspicion with the testcase for CVE-2018-12386, discussed in section 6.3. The discovered
testcase did indeed not result in a crash if the function body, or part thereof, was surrounded
by try-catch statements. While this does not mean that it is impossible to trigger such
a vulnerability with a fuzzer that wraps every statement inside a try-catch block, it
shows that doing so in fact influences the processing of the engine in a way that can
lead to missed vulnerabilities. As such, the third requirement is that our system is able
to generate semantically valid programs in high number as to avoid the need for said
try-catch constructs. It should, however, be noted that it is generally desirable to generate
semantically invalid programs as well as vulnerabilities often occur due to unexpected
internal exceptions being raised. Complete semantic correctness is thus not desirable.

To summarize, our requirements are as follows:

1. Emit syntactically valid samples

2. Define mutations to control and data flow of a program

3. Emit a high percentage of semantically valid samples



4. Coverage Guided JavaScript Fuzzing

This chapter explores a new approach towards coverage guided fuzzing for scripting engines.
It starts out with an overview of the proposed system and a discussion about how it aims
to satisfy the previously defined requirements, namely syntactic correctness, the use of a
mutation-based approach, and a high degree of semantic correctness. Afterwards each of
the relevant components of the presented approach is described in more detail.

4.1 Concept

The central idea to solving the described requirements is to use mutation-based fuzzing
on JavaScript code. However, instead of mutating syntactic constructs like the AST or
even the textual source code representation, we instead propose to mutate on a ”bytecode”
level which is closer to the engines internal representation of the code. This is depicted in
figure 4.1. In essence, the bytecode level resembles a control and data flow graph, which is
what is ultimately required to reach the majority of the attack surface of a scripting engine
while syntactic information, such as the AST, is largely discarded during the parsing step.

To achieve this, we define a custom intermediate language which we call FuzzIL. This
enables us to define new mutation strategies that could not easily be implemented as AST
mutations, such as the input mutator discussed in section 4.3.1. This satisfies the second
requirement.

To satisfy the first requirement, the syntactical correctness of the produced samples, it is
enough to guarantee that the conversion from our IL to JavaScript is always possible. This
is trivial to guarantee as will further be discussed below.

To satisfy the third requirement, we first note that due to the relatively minor changes
performed by each mutation, the chances of it turning a semantically valid program into an
invalid one are relatively small. Further, all mutations are required to obey to a set of basic
semantic correctness rules of the IL, enforcing such things as the definition of a variable
before its usage. Finally, by avoiding the inclusion of semantically invalid programs, it is
possible to keep the overall percentage of emitted invalid programs at an acceptable level.
We slightly extend the definition of semantic correctness for our programs to reject samples
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Figure 4.1 Different levels at which mutations can be applied for a scripting language.

that run for too long as well. As such we define a program to be valid if it neither results
in a runtime exception nor a timeout but instead terminates successfully within the given
timeframe.

4.2 FuzzIL

With FuzzIL we introduce a custom intermediate language (IL) that lends itself to easy
mutations while allowing straight-forward conversion, from here on called lowering, to
JavaScript code. A FuzzIL program consists of a list of instructions, each in turn consisting
of an operation together with a list of input and output variables. Listing 4.1 shows an
example FuzzIL program consisting of twelve instructions which compute the sum of the
numbers from zero to nine and output it. Variables are identified through integers and
are required to be numbered consecutively starting from zero in every program. Amongst
others, this makes it possible to implement supporting data structures in a simple way, e.g.
a set of variables as bitmap and a map of variables to some value type with a linear array.

Lowering of a FuzzIL program to JavaScript is possible in various ways. Listing 4.2 shows
the result of a straight-forward lowering algorithm, which converts each instruction by
itself. Listing 4.3 shows the result of a more elaborate lowering algorithm which replaces
variable uses with the expression defining them in certain circumstances and omits variable
definitions if these are not needed. While more difficult to implement and mostly irrelevant
for the execution of the code, the second algorithm produces more human readable output,
which in turn facilitates the analysis of both crashes and interesting programs to gain
insights into the state of the fuzzer. Both algorithms have been implemented.

Many FuzzIL Operations are parametric. In the representation seen in listing 4.1, the
parameters of an operation are enclosed in single quotes. Parameters include constants in
operations such as LoadInt and LoadString, property and method names, and operators
in binary and unary operations as well as in comparisons.
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In FuzzIL, control flow is implemented by special block instructions. For each block type
there exist at least two operations: one that starts the block and one that ends it. This can
be seen in listing 4.1 with the For loop in lines 5 through 8. Each block has its own scope,
meaning that variables defined inside of it are not visible to the outside. Furthermore, the
input variables to the block instructions themselves, such as the condition variable in a
while or do-while loop, have to be defined in the outer scope. This reflects the behavior
of common programming languages.

A FuzzIL program is always in SSA form, meaning that a variable is assigned exactly once.
SSA form facilitates the implementation of various code analysis algorithms, such as the
define-use analysis. To produce behavior that requires the reassignment of a variable we
introduce Phi operations, which in some ways work inverse to Phis in compiler construction
theory: a variable defined through a Phi operation has an initial value (the second input
to the Phi operation) but can be used as first input of a Copy operation, which will result
in a reassignment of the variable. This can be seen in listing 4.1 in line 4 and 7.

The following invariants must hold for every FuzzIL program, and thus for every JavaScript
program generated from it:

• Variables are numbered consecutively

• All input values to an instruction must be variables, there are no immediate values
or nested expressions

• All variables must be defined before they are used, either in the current block or an
enclosing one

• A block begin must eventually either be followed by the corresponding closing
instruction or by an intermediate block instruction, such as a BeginElse for which
the same holds true

• All inputs to block instruction must be defined in an outer block

• The first input to a Copy instruction must be the output of a Phi instruction

The deliberately strict form of a FuzzIL program makes it possible to define various
mutations on a FuzzIL program. These will be described in the next section.

1 v0 <− LoadInt ’0 ’
2 v1 <− LoadInt ’10 ’
3 v2 <− LoadInt ’1 ’
4 v3 <− Phi v0
5 BeginFor v0 , ’< ’ , v1 , ’+ ’ , v2 −> v4
6 v6 <− BinaryOperation v3 , ’+ ’ , v4
7 Copy v3 , v6
8 EndFor
9 v7 <− LoadString ’ Result : ’

10 v8 <− BinaryOperation v7 , ’+ ’ , v3
11 v9 <− LoadGlobal ’ conso le ’
12 v10 <− CallMethod v9 , ’ log ’ , [ v8 ]

Listing 4.1: An example FuzzIL program.
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1 const v0 = 0 ;
2 const v1 = 10 ;
3 const v2 = 1 ;
4 l e t v3 = v0 ;
5 f o r ( l e t v4 = v0 ; v4 < v1 ; v4 = v4 + v2 ) {
6 const v6 = v3 + v4 ;
7 v3 = v6 ;
8 }
9 const v7 = ”Result : ”;

10 const v8 = v7 + v3 ;
11 const v9 = conso l e ;
12 const v10 = v9 . l og ( v8 ) ;

Listing 4.2: The example FuzzIL program 4.1 converted to JavaScript through a naive
lowering algorithm.

1 l e t v3 = 0 ;
2 f o r ( l e t v4 = 0 ; v4 < 10 ; v4++) {
3 v3 = v3 + v4 ;
4 }
5 conso l e . l og ( ”Result : ” + v3 ) ;

Listing 4.3: The example FuzzIL program 4.1 converted to JavaScript through a more
elaborate lowering algorithm which performs expression inlining if possible.

The following JavaScript language features are currently supported by FuzzIL:

• Number, string, and boolean literals with the LoadInt, LoadFloat, LoadString, and
LoadBoolean operations

• Null and undefined values with the LoadNull and LoadUndefined operation

• Object and array literals with the CreateObject and CreateArray operations

• Function definitions with the BeginFunctionDefinition and EndFunctionDefini-

tion operation

• Property access with the LoadProperty, StoreProperty, and DeleteProperty op-
eration

• Computed property access, in which another variable is used as property name, with
the LoadComputedProperty, StoreComputedProperty, and DeleteComputedProp-

erty operations

• Function-, method- and constructor calls with the CallFunction, CallMethod, and
Construct operations

• Binary operations, unary operations, and comparisons with the BinaryOperation,
UnaryOperation, and Compare operation
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• Various loops with the BeginWhile, BeginDoWhile, BeginFor, BeginForIn, Begin-
ForOf, and the corresponding closing operations

• If-else constructs with the BeginIf, BeginElse, and EndIf operations

• Try-catch constructs with the BeginTry, BeginCatch, and EndTryCatch operations

• Other control flow features such as Continue, Break, and Return

4.3 Mutations

A mutation transforms an existing program into a new, slightly different program, while
ideally preserving its interesting behavior. We propose the following mutations to perform
modifications of control and data flow as well as to combine multiple programs into one:

• The input mutator, which changes input variables of instructions

• The operation mutator, which mutates parameters of operations

• The insertion mutator, which inserts newly generated code into a program

• The combine mutator, which combines two existing programs together

• The splice mutator, which inserts a part of an existing program into another one

Each one will be discussed in more detail in the following sections.

Additional mutation algorithms, like duplicating instructions and replacing output variables,
have been evaluated but did not result in improved results. However, it is likely that
further mutation algorithms, especially ones that target the control flow of a program, will
lead to improved results. This remains subject of future work.

4.3.1 Input Mutator

This mutator is the prime way of mutating data flow in a program. It makes use of the
fact that in FuzzIL, all inputs to an instruction are variables. As such the input mutator
operates by selecting one or multiple instructions in the original program and replacing
one of their inputs with a different, random variable. Listing 4.4 shows an example of this
mutation. Here, the first argument of a function call has been replaced with a different
value.

1 # Before Mutation
2 . . .
3 v16 <− Cal lFunct ion v1 , v6 , v9 , v3
4
5 # After Mutation
6 . . .
7 v16 <− Cal lFunct ion v1 , v12 , v9 , v3

Listing 4.4: Example application of the Input Mutator.

Special handling is required to ensure that the first input to a Copy instruction is always a
variable produced by a Phi instruction and to ensure that the inputs to a closing block
instruction are selected from the outer scope.
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4.3.2 Operation Mutator

This mutator is responsible for mutating parameters of operations. This includes the
constants used by the LoadInteger, LoadString, LoadBoolean, and LoadFloat operations,
but also the comparator used in comparisons, the property or method name used in property
operations and method calls, as well as the actual operation in a binary or unary operation.

4.3.3 Insertion Mutator

This mutator is the only way that new code can be generated and is in essence a small
generative component. It makes use of a list of predefined code generators: functions that
emit FuzzIL code into the mutated program.

A multitude of code generators have been implemented, ranging from fundamental code
generators to produce an integer literal or call a function to specific ones that produce an
instance of a TypedArray1 or cause a previously defined function to be JIT compiled by
repeatedly invoking it.

The insertion mutator allows us to start with an empty corpus instead of having to import
existing code, as new code will be generated by this mutator.

4.3.4 Combine Mutator

The combine mutator, as well as the splice mutator discussed next, allow the combination
of two existing programs. The combine mutator is the simpler one of the two, inserting
another program in full at a random position in the current program. This only requires
the renaming of all variables in the inserted program and the following code of the outer
program to avoid collisions of variable numbers between the two. Listing 4.5 shows an
example of this mutator. Here the first program has been inserted into the second one
after the first instruction.

1 # Program 1
2 v0 <− LoadString ’ bar ’
3 v1 <− CreateObject ’ foo ’ , v0
4
5 # Program 2
6 v0 <− LoadInt ’1337 ’
7 v1 <− LoadGlobal ’ conso le ’
8 v2 <− CallMethod v1 , ’ log ’ , [ v0 ]
9

10 # Combined program
11 v0 <− LoadInt ’1337 ’
12 v1 <− LoadString ’ bar ’
13 v2 <− CreateObject ’ foo ’ , v1
14 v3 <− LoadGlobal ’ conso le ’
15 v4 <− CallMethod v3 , ’ log ’ , [ v0 ]

Listing 4.5: Example application of the Combine Mutator.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed arrays

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
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4.3.5 Splice Mutator

The splice mutator works similar to the combine mutator in that it inserts existing code at
a random position in the mutated program. However, instead of inserting another program
in full, it will insert a group of related instructions which is called a slice. The key property
of a slice is that each variable that is used by any instruction in the slice is also defined by
an instruction in the slice. During insertion, variable numbers will be changed in the same
way as for the combine mutator.

A slice of a program is found through the following algorithm: first select a random
instruction of the program, then recursively select all instructions whose output variables
are used by the current selection. When all input variables are defined, copy all selected
instruction in their previous order into the mutated program.

4.4 Scoring

As described in section 2.5, guided fuzzing inevitably requires a metric to score every sample.
We chose edge coverage, a broadly used and fairly universal metric, for our implementation.
With edge coverage, a sample is considered interesting if it reaches a previously unseen
edge in the control flow graph. In contrast to many existing fuzzers such as afl [Zal15],
we do not take edge counts into account. This is due to the observation that every edge
can likely be triggered multiple times by wrapping the generated code into a loop. Edges
can thus be represented as a bitmap with one bit for each edge. If at least one previously
unseen edge is triggered by a sample, that sample is regarded ”interesting” and added to
the corpus after refinement as described in the next section.

4.5 Refinement

Before adding newly found samples to the corpus or saving crashing samples to disk, a set
of refinement steps is performed. Refinement currently consists of three steps: a check for
deterministic behavior of the sample, followed by minimization, and finally normalization
of the sample.

4.5.1 Determinism

The first step of the refinement phase is to check whether the new sample behaves in a
deterministic way. A sample that resulted in a crash is deemed deterministic if it crashes
during a second execution, while a sample that triggered new coverage edges is deemed
deterministic if all newly discovered edges are triggered again during a second execution.

Determinism of samples is relevant for both crashes and interesting samples. For crashes,
a non-deterministic crash might be a false positive, for example related to a low-memory
situation of the system as a whole. In the current implementation, non-deterministic crashes
are still saved to disk but marked as non-deterministic in the filename. For interesting
samples, non-determinism essentially implies that the following refinement steps, namely
minimization, will not, or only to a limited degree, be successful. As such non-deterministic
samples that triggered a new edge are currently discarded.
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4.5.2 Minimization

The main part of the refinement process is the minimization phase in which the sample’s
size is reduced as much as possible while still preserving its original, interesting behavior.
This is necessary as mutations can only grow the sample in size, never shrink it. As
such, the average program size would drastically increase over time without minimization,
resulting in lower performance. Furthermore, the amount of instructions that are not
relevant for a programs behavior would grow as well, decreasing the effectiveness of various
mutations.

The minimization phase is implemented as a fixed-point iteration of different minimization
algorithms. Each of them in turn performs a set of reductions: atomic modifications to the
current program resulting in a new program that is, in some way, smaller than the original
one. After one such reduction is performed, the resulting program is executed to verify
whether it still behaves in the original way, meaning either crashing or triggering all of the
previously unseen edges. If its behavior changed, the program is reverted to its previous
state, otherwise the changes are kept.

It should be noted that minimization in general is an expensive process. In fact, during
the first several million iterations, it is common to see the number of executions spent on
minimization to outnumber the number of executions of newly generated programs. As the
rate of newly discovered edges decreases over time, this effect disappears and the number
of executions spent on minimization usually accounts for only around one percent of the
total executions after ten to hundred million iterations.

The different minimization algorithms currently used are discussed next.

4.5.2.1 Generic Instruction Remover

The first minimization algorithm is also the most generic one. It tries to remove non-block
instructions that do not contribute to the desired behavior.

The general idea is to iterate backwards through the program and remove every instruction
whose output is not used in the following code. Each deletion of an instruction must
be performed as a single reduction. As such, this minimizer will require O(n) program
executions, where n is the number of instructions in the program.

4.5.2.2 Input Reducer

One issue that remains is that instructions with a variable number of inputs, such as
function calls or array literals, can potentially prevent a large number of unnecessary
instructions from being removed during the generic minimization. Listing 4.6 shows an
example of such a situation. Here, the first four instruction are all required by the function
call in line 6, preventing them from being removed if the call itself is necessary, even though
the function in question does not make use of the argument.

To solve this, a second minimization algorithm is used which removes inputs of instructions
whose operation can take a variable number of inputs, namely the CreateObject, Cre-
ateArray, CallFunction, CallMethod, and Construct operations. As some of the inputs
might be required, each input must be removed as a separate reduction.
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1 v0 <− LoadInt ’42 ’
2 v1 <− LoadString ’ foo ’
3 v2 <− LoadBool ’ true ’
4 v3 <− CreateArray v0 , v1 , v2
5 v4 <− LoadGlobal ’Math ’
6 v5 <− CallMethod v4 , ’ random ’ , v3

Listing 4.6: An unused argument to a function call preventing a number of other instructions
from being removed during minimization.

The core issue is, however, not limited to instructions with a variable number of arguments.
It is, for example, often possible to replace an addition operation with an integer literal as
only the type of the output is relevant. However, fully assessing the impact of this more
generic issue and designing an algorithm to resolve it remain subject of future work.

4.5.2.3 Block Reducer

So far only non-block instructions have been considered. Removal of block instructions is,
however, equally important. There appears to be no general algorithm that is capable of
removing block instructions. Instead, special handling is required for the different types of
blocks, namely loops, if-else constructs, and try-catch blocks.

When dealing with loops, the goal is to determine whether the loop itself is relevant or
only the instructions in the loop body. For that it suffices to remove only the loop itself
(more specifically, the two instructions that start and end the loop block) and leave the
loop body in place, which would now execute only once. However, special treatment has to
be given to break and continue instructions inside the loop body: without a surrounding
loop, these would be syntactically invalid, preventing the removal of the loop. As such any
break or continue instruction inside the loop body, which are not part of a nested loop,
must be removed as well.

If-else constructs are currently implemented by three instructions: BeginIf, BeginElse,
and EndIf. Similar to loops, the if-else construct itself might not be required, only the
body of either of the blocks. As such it would be possible to first remove everything but
the body of the If block, then, if that did not succeed, remove everything but the body of
the Else block. However, it is likely that the body of the block that is not relevant has
already been fully removed by previous reductions. As such it suffices to remove all the
three block instructions at once.

Similar to if-else constructs, try-catch constructs are supported through the BeginTry,
BeginCatch, and EndTryCatch operations. In case the try-catch construct itself is not
required to reach the interesting behavior, the following possibilities exist:

1. Only the body of the Try block is required

2. Only the body of the Catch block is required, which is reached through some operation
in the Try block that throws an exception

3. The first part of the Try block, until the instruction that raises an exception, is
required as well as the entire body of the Catch block
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The first case is resolved by removing only the three block instructions, as in that case, the
body of the Catch block will likely have been removed already. The second case is resolved
by removing the three block instructions as well as the entire body of the Try block. This
is necessary as the group of instructions in the Try block that cause an exception to be
raised might be arbitrarily large. Consider listing 4.7 for an example of such a situation
that was found during testing. The third case is currently only resolved heuristically: the
three block instructions as well as the last instruction in the Try block, which is assumed
to be the one raising an exception, are removed. This would, however, not work for the
example in listing 4.7 if there were some relevant code before the loop in line 2.

1 t ry {
2 f o r ( l e t v16 = 0 ; v16 < 27 ; v16 = v16 + −2473693327) {
3 const v17 = Math( v16 , v16 ) ;
4 }
5 } catch {
6 s o m e i n t e r e s t i n g c o d e ( ) ;
7 }

Listing 4.7: A group of instructions that trigger an exception and thus transfer execution
to the Catch block.

4.5.2.4 Special-Purpose Minimizers

While the presented minimizers are generally able to minimize a given program significantly,
there are some code patterns that cannot be removed with the generic approaches. These
code patterns, from here on called artifacts, can cause the generated programs to grow
unnecessarily large as they, once introduced in a program, will remain in all programs
derived from it later on. Listing 4.8 shows a simple example of such an artifact that occurs
when using a lowering algorithm that is capable of inlining expressions. In this case, the
logical or operation might not be required. However, removing just the logical or will result
in the function call suddenly becoming live code. This will raise an exception, causing the
reduction to fail.

This particular issue can be resolved with a special-purpose minimizer that removes the
logical or as well as its right-hand side. However, a more generic solution is to not perform
expression inlining when lowering samples intended for execution to avoid the occurrence
of dead code in the first place.

1 # FuzzIL
2 v0 = LoadInt ’42 ’
3 v1 = LoadInt ’43 ’
4 v2 = Cal lFunct ion v1
5 v3 = BinaryOperation v0 ’ | | ’ v2
6
7 # Lowered to JavaScr ipt
8 const v0 = 42 | | ( 4 3 ) ( ) ;

Listing 4.8: A code artifact that cannot be removed by the existing minimizers.
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Another kind of artifact commonly observed are nested function calls such as shown in listing
4.9. This type of code can often be reduced simply to perform_interesting_action(42).
The way to achieve this is by implementing inlining : functions that are called exactly once
are discarded and the calling instruction is replaced with the function body. Function
parameters are replaced by the arguments while the return value is replaced with a Phi
variable which is initially set to undefined, then reassigned at each return instruction in
the function body. Return instructions are then discarded as well.

There are likely further artifacts, which, if they occur frequently, will require special
handling during minimization.

1 function v0 ( ) {
2 function v1 ( ) {
3 function v2 ( ) {
4 function v3 ( v4 ) {
5 p e r f o r m i n t e r e s t i n g a c t i o n ( v4 ) ;
6 }
7 v3 ( 4 2 ) ;
8 }
9 v2 ( ) ;

10 }
11 v1 ( ) ;
12 }
13 v0 ( )

Listing 4.9: Nesting of functions can build up over time and requires inlining of functions
to resolve.

4.5.3 Normalization

Normalization is the final step of the refinement process. During normalization, variables
are renamed so they are numbered consecutively again, an invariant of every FuzzIL
program. This is necessary as instructions, and thus output variables, might have been
removed during minimization, leaving holes in the space of used variable numbers in the
program.

4.6 Fuzz-testing with FuzzIL

After the central mechanisms of our proposed system have been presented in the preceding
sections, this section now discusses the overall architecture. The general scheme follows
the one described in section 2.5.

Mutation-based fuzzing requires an initial corpus of test cases. In our current implementa-
tion, the initial corpus, however, only contains the program shown in listing 4.10. This is
possible due to the insertion mutator, discussed in section 4.3.3, which is able to generate
new code from scratch. It is likely that a larger initial corpus, possibly containing programs
from various regression tests, could lead to improved results. This would require a lifter to
convert JavaScript to FuzzIL and remains the subject of future work.
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1 v0 <− LoadGlobal ”Object ”
2 v1 <− Cal lFunct ion v0

Listing 4.10: The (arbitrarily chosen) seed program in the initial corpus.

The central fuzzing loop repeatedly chooses a random program from the current corpus
and mutates it. However, it is often unlikely that a single mutation will suffice to discover
new behavior. Moreover, some mutations tend to work well together: an input mutation
might be most effective if it can combine the data flow of two separate programs that
were previously combined into one program by a splice or combine mutation. As such, a
fixed number of mutations are applied consecutively before a new program is selected from
the corpus. Through measurements of the achieved coverage after one hundred million of
iterations, it was determined that the number of consecutive mutations on a single sample,
referred to as N in listing 4.11, should be somewhere between five and fifteen. If that
number is too low, it becomes less likely to discover new behavior. On the other hand, if
that number is too high, many iterations will be ”wasted” on programs that have already
lost their interesting behavior due to a previous mutation.

The next step of the fuzzing loop is then to execute the mutated program and evaluate the
result. Execution can generally result in one of the following outcomes, which are processed
differently:

• Execution resulted in a crash. In that case the sample is minimized and stored to
disk.

• Execution terminated unsuccessfully, either through a runtime exception or a timeout.
In that case the generated program is invalid and is discarded.

• Execution triggered previously unseen control flow edges. In that case the program
is deemed interesting and is, after refinement, inserted into the corpus.

• Otherwise the program is valid but causes no new behavior. In that case the currently
mutated program is replaced with the newly generated one.

Listing 4.11 summarizes the core fuzzing algorithm.

Programs that have been selected for mutation a certain number of times (currently 128) are
subject to eviction from the corpus. However, a minimal size of the corpus (currently 1024)
is enforced as well to prevent the corpus from depleting.
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1 l e t C be an empty s e t o f FuzzIL programs
2 i n s e r t an i n i t i a l program in to C
3 repeat i n d e f i n i t e l y :
4 l e t P be a random program in C
5 repeat N times :
6 l e t P’ be the r e s u l t o f apply ing a random mutation to P
7 l e t R be the r e s u l t o f execut ing P’
8 i f R r e s u l t e d in a crash :
9 minimize and normal ize P’

10 save P’ to d i sk
11 otherwi se i f R terminated u n s u c c e s s f u l l y :
12 cont inue
13 otherwi se i f R conta in s p r e v i o u s l y unseen edges :
14 i f P’ behaves d e t e r m i n i s t i c a l l y :
15 mark the new edges as seen
16 minimize and normal ize P’
17 i n s e r t P’ i n to C
18 otherwi se :
19 s e t P to P’

Listing 4.11: High-level fuzzing algorithm.
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5. Implementation

The proposed system was implemented in the Swift1 programming language, with some
parts implemented in C. The implementation is around 7000 lines of code (LOC) in size
and currently supports the Linux and macOS operating systems. This section will highlight
some of the noteworthy aspects of the implementation.

5.1 Operations and Instructions

Internally, the distinction between Instructions and Operations allows Operations to be
shared between multiple programs as they do not contain any program-specific data
such as variable names. Operations are thus implemented as Swift classes, meaning that
they have reference semantic and are automatically reference counted to avoid memory
leaks. They store a set of flags, such as whether they represent the start or end of a
block, as well as the number of input and output variables. Further, as some operations
are parametric, the parameters are also stored in child classes. Listing 5.1 shows the
implementation of the Operation class while listing 5.2 shows the LoadInteger subclass.
Variables are implemented as simple 16-bit integers for low memory usage while Instructions
are implemented as a pointer to an Operation together with an array storing both in- and
outputs. The number of in- and outputs of each instruction is defined by its Operation.

1https://swift.org

https://swift.org
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1 c l a s s Operation {
2 l e t f l a g s : Operat ionFlags
3
4 // The number o f input v a r i a b l e s to t h i s opera t i on
5 l e t numInputs : Int
6
7 // The number o f newly c rea ted v a r i a b l e s in the cur rent scope
8 l e t numOutputs : Int
9

10 // The number o f newly c rea ted v a r i a b l e s in the inner scope
11 // i f one i s c r ea ted by t h i s i n s t r u c t i o n
12 l e t numInnerOutputs : Int
13 }

Listing 5.1: The fields of the Operation class.

1 c l a s s LoadInteger : Operation {
2 l e t va lue : Int
3
4 i n i t ( va lue : Int ) {
5 s e l f . va lue = value
6 super . i n i t ( numInputs : 0 , numOutputs : 1 ,
7 f l a g s : [ . i s P r i m i t i v e , . i sParametr i c ] )
8 }
9 }

Listing 5.2: The fields and constructor of the LoadInteger class.

5.2 Program Construction and Mutation

A mutation algorithm is expected to receive a program as input and return a mutated copy
of the program as output. Mutations are then performed while copying the input program.

To facilitate the construction of programs, and thus the implementation of mutation
algorithms, a ProgramBuilder class has been implemented. At its core, it provides an API
to construct a program by adding instructions to it. Further, it manages the variable space
of the program being built and provides access to them. Finally, it takes care of renaming
variables when appending instructions from a different program. As such, the code shown
in listing 5.3 suffices to concatenate two programs together.
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1 l e t program1 = . . .
2 l e t program2 = . . .
3
4 l e t b = ProgramBuilder ( )
5 b . append ( program1 )
6 b . append ( program2 )
7
8 p r in t (b . program )

Listing 5.3: Example usage of the ProgramBuilder class to concatenate two programs. This
includes renumbering variables of the second program to avoid collisions.

5.3 Type System

A lightweight type system and type tracking mechanism has been implemented which
assigns a type to every variable in a program during construction. This is purely an
optimization to avoid producing obviously invalid constructs such as performing a function
call on a primitive type such as a number. Currently, the following types are implemented:
Unknown, Integer, Float, String, Boolean, Object, and Function. These correspond to the
output of the operations LoadInt, LoadFloat, LoadString, LoadBoolean and Compare,
CreateObject and CreateArray. The Unknown type is given to all other output variables,
in particular the result of any function or method call and property loads. It would be
possible to compute the types of certain binary and unary operations if the input types are
known. Furthermore it would be possible to determine types of the result of some function
calls as well. Further improvements to the type tracking remain subject of future work.

5.4 Code Generators

As mentioned in section 4.3.3, a number of code generators are used by the insertion
mutator to generate new code. Listing 5.4 gives an example of such a code generator. The
code generator receives a program builder instance containing the currently constructed
program and adds a number of instructions at the current position in the program. In
this particular case it generates code to set the prototype of a random object to another
object. As such, it would generate JavaScript code similar to the one shown in listing
5.5. This code generator also shows how the type tracking, performed during program
construction, can be used by clients of the ProgramBuilder class. The type MaybeObject

is a combination of the Unknown and the Object type.

1 s t r u c t PrototypeOverwriteGenerator : CodeGenerator {
2 func generate ( b : ProgramBuilder ) −> Bool {
3 l e t obj = b . randVar ( ofType : . MaybeObject )
4 l e t proto = b . randVar ( ofType : . MaybeObject )
5 b . s to reProper ty ( proto , as : ” p r o t o ” , on : obj )
6 re turn true
7 }
8 }

Listing 5.4: An example for a code generator as used by the insertion mutator.
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1 v42 . p r o t o = v17 ;

Listing 5.5: Exemplary JavaScript code generated by the code generator in listing 5.4.

5.5 Coverage

Coverage measurements were implemented using a shared memory region between the
fuzzer process and the JavaScript engine process as well as compiler instrumentation to
collect edge coverage information. The target program was instrumented using clangs
sanitizer-coverage feature, available through the -fsanitize-coverage=trace-pc-guard

command line option. This causes all branches in the control flow graph to be instrumented
with a call to a special function __sanitizer_cov_trace_pc_guard which receives a
pointer to an integer which uniquely identifies the edge. In our case edges were numbered
from 1 through N. The implementation of __sanitizer_cov_trace_pc_guard is given
in listing 5.6. It computes the index of the edge in the shared memory bitmap and sets
the corresponding bit. Afterwards, it deactivates the edge by setting its number to zero.
This is merely a performance improvement to avoid setting the same bit multiple times.
Compiler instrumentation naturally induces a certain overhead in execution speed. In our
measurements, this overhead was less than a factor of two of the original execution speed.

1 extern ”C” void s a n i t i z e r c o v t r a c e p c g u a r d ( u in t32 t ∗guard ) {
2 i f ( ! ∗ guard ) return ;
3 u in t32 t index = ∗guard − 1 ;
4 shmem−>edges [ index / 8 ] |= 1 << ( index % 8 ) ;
5 ∗guard = 0 ;

Listing 5.6: Implementation of the __sanitizer_cov_trace_pc_guard which is responsible
for collecting coverage information and writing it to a shared memory region.

5.6 Program Analysis

To support various mutation and minimization algorithms, a number of program analyses
have been implemented. These include:

• A define-use analysis which is able to provide the definition of every variable in a
program in O(1) time. This is for example used to implement a lowering algorithm
that is capable of inlining expression.

• A type analysis implementing the type tracking mechanism described in section 5.3.

• A scope analysis which keeps track of currently visible variables through a stack of
active scopes, each containing a list of variables which were defined in them. This is
used for efficient access to currently visible variables during program construction.

• A dead-code analysis which determines whether the current position in the program
is in unreachable code, e.g. because it is preceded by a Return operation. This is
used by Mutators that insert new or existing code into a program so they can avoid
producing dead code.
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Execution Strategy Execution Time Execution Overhead

Unoptimized 1009ms 9ms
Forkserver 1007ms 7ms
REPRL 1001ms 1ms

Table 5.1 Comparison of the execution overhead of three different execution mechanisms.

5.7 Program Execution

When running the generated scripts in the target engine, execution speed is crucial for the
performance of the fuzzer as a whole. As such, two mechanisms to reduce the overhead of
launching a new process have been implemented: a forkserver, as used by e.g. afl [Zal15],
and another mode called REPRL, which is similar in nature to the in-process fuzzing
performed by e.g. libFuzzer2.

The idea behind a forkserver is to save the large overhead of the execve or similar system
call. This is done by adding a piece of code into the target program to run after initialization
is completed but before any input is processed. This code will wait for commands from the
fuzzer process and then perform a fork system call for every generated input. The child
process can then immediately process the input without performing its process initialization
anew.

The other mode, called read-eval-print-repeat-loop, or REPRL for short, tries to reuse an
existing process for multiple inputs. In essence it modifies the engine such that it will read
input code from a predefined file descriptor and execute it, then reset its internal state and
await the next program. This, too, avoids a large part of the initialization overhead.

The performance of the different approaches was evaluated by executing a script that
would wait one second, then measuring the total execution time. The measurements were
performed on JavaScriptCore at commit b4992ab, compiled with the -O3 optimization level,
and averaged over one hundred executions. The results are shown in table 5.1. As can be
seen, the REPRL mechanism reduces the overhead the most, to about one millisecond.

5.8 Infinite Loops

Another performance problem are infinite loops, or in general loops that run for too long.
Even though the code generators used by the insertion mutator rarely produce infinite
loops, the input and operation mutator commonly cause such constructs to appear.

Infinite loops are mostly dealt with through a low timeout. An experimental feature to
avoid infinite loops has been implemented in the form of loop guards: instructions that are
placed at the beginning of function and loop bodies and which interrupt execution after a
certain number of iterations. They are lowered to code such as shown in listing 5.7. As
long as the guards do not trigger, they have minimal impact on the control and data flow
of the program. However, they can clearly still result in different behavior of e.g. a JIT
compiler. As such they are disabled by default.

2https://llvm.org/docs/LibFuzzer.html

https://llvm.org/docs/LibFuzzer.html
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1 /* Original FuzzIL program

2 ...

3 BeginWhile v7

4 LoopGuard

5 ...

6 EndWhile

7 ...

8 */

9
10 . . . ;
11 var guard3 = 0 ;
12 while ( v7 ) {
13 i f (++guard3 > 10000)
14 break ; // or alternatively throw an exception

15 . . . ;
16 }
17 . . . ;

Listing 5.7: A LoopGuard instruction at the beginning of a loop and the resulting JavaScript
code.

5.9 Crash Deduplication

Basic support for crash deduplication, the problem of detecting when multiple crashes
have the same root cause, was implemented as well. This was achieved in the same way
as is done in afl [Zal15], namely through a dedicated edge bitmap only used for crashing
samples. Each crashing testcase is then automatically minimized, as described in section
4.5.2, before edge coverage is measured and compared to this dedicated bitmap. If no new
edges were reached the testcase is regarded a duplicate.



6. Evaluation

Due to the difficulty of comparing the quality of fuzz-testing approaches, as noted by Klees
et al. [KRC+18], as well as the small number of publicly available alternative approaches
and lack of benchmark suites to compare fuzzer performance we focus our evaluation mainly
on newly discovered vulnerabilities, indicating that the presented approach is capable of
finding defects in otherwise fuzz-tested and audited software. This follows the advice given
by Klees et al.

As such, this chapter first discusses our evaluation methodology, then presents a number of
newly discovered vulnerabilities. Afterwards, one of the discovered vulnerabilities, CVE-
2018-12386, is discussed in more detail to highlight the path from a crashing sample to a
proof-of-concept exploit. Finally, different types of vulnerability that are hard to detect
with the presented approach are discussed and possible improvements suggested.

6.1 Methodology and Execution

Evaluation was performed during development on a Ubuntu 16.04 machine equipped with
64GB of RAM and a quad-core CPU with hyperthreading (Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz). Tests usually ran between 10 and 100 million iterations, with execution speed
usually between 50 and 200 iterations per second. We acknowledge that this is generally
too little: a thorough evaluation would require at least 30 tests per target, as suggested by
Klees et al. [KRC+18]. Further, each test should run until there is no significant increase
in coverage anymore, e.g. until the rate of newly found edges within a predefined number of
iterations reaches zero. This will require multiple weeks of fuzzing on a machine comparable
to ours and was thus not possible to do in the scope of this work.

To improve the execution speed and increase the chances of detecting faulty conditions we
used non-standard configuration options and performed some modifications to the target
engines. These will be discussed next.

JIT compilation usually only happens after the target function has been invoked thousands
of times, which slows down automatic testing. As such, the target engines were configured
to trigger JIT compilation much sooner, either by modifying the source code or by using
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existing runtime flags. However, it is generally not desirable to compile a function as soon
as possible, i.e. after a single invocation, as relevant type information might not fully be
available. This would then cause the JIT compiler to behave differently. As such, the
engines were configured to JIT compile a function after 10 to 100 invocations.

All of the target engines feature numerous internal assertions which are enabled in debug
configurations of the software. These assertions are generally useful for detecting vulnera-
bilities as they tend to detect faulty conditions that otherwise do not result in memory
corruption or otherwise externally observable misbehavior. However, the debug configura-
tion of the software commonly lacks compiler optimization, which degrades performance
significantly. As such, the target engines were built in a non-standard configuration in
which all debug assertions were enabled but the software was otherwise built in a release
configuration. AddressSanitizer1 and similar compiler instrumentations were used as well
but did not yield an increase in the number of detected faults.

Some vulnerabilities, e.g. use-after-free vulnerabilities, require garbage collection to trigger.
As such, engines were configured to expose a function to JavaScript code which performed
a full garbage collection. Furthermore, engines were configured to always perform garbage
collection after executing a program from the fuzzer.

During testing our implementation was able to discover around 50 unique faults across all
four major engines. These will be discussed in the next section.

6.2 Discovered Vulnerabilities

Most of the faults encountered during our tests were related to internal assertions which
are enabled in debug configurations of the software. These do, however, not necessarily
imply the existence of a security vulnerability. In general, a failed debug assertion can be
the result of

• an internal error which is potentially security critical, thus, when exploited, can lead
to remote code execution or leakage of sensitive information, or

• an internal error that causes observable misbehavior of the engine, such as incorrect
results being computed, but is not a security issue, or

• an invalid assertion which rejects a condition that is in fact valid.

As such the identified faults have to be analyzed manually to determine whether they
are the result of an underlying security vulnerability. This is often a non-trivial endeavor
as it requires a good understanding of the surrounding code and the internals of the
respective engine. Analysis of a subset of the identified faults resulted in the discovery of
four previously unknown vulnerabilities which are presented in table 6.1. Section 6.3 will
further explore one of the found vulnerabilities.

1https://github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer
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Identifier Description

WebKit Bug 185328a In JavaScriptCore, a bug in the JIT compiler’s special handling
of the Number.isInteger function. This would lead to a register
being clobbered with controlled data during execution of the
generated machine code. This vulnerability was reported while
the vulnerable code was only in pre-release software. As such,
no CVE was assigned for it. The bug was fixed with git commit
eeb3a1d26b2dc2490e91fb2f897ddaa84fb3dfc4.

CVE-2018-4299b In JavaScriptCore, a bug in the implementation of Proxy.apply.
This bug would cause an engine-internal object, namely a
JSLexicalEnvironment object, to be leaked to unprivileged
JavaScript. As this object was only expected to be used in
very specific ways, it was possible to cause memory corrup-
tion by using it in unintended ways. This resulted in an ex-
ploitable condition. The vulnerability was fixed with git commit
31fc3561a2b3e8c44b1ca123c418618b23a9d817.

CVE-2018-4359c A bug in the JIT compiler’s handling of floating point multiplica-
tion in certain special cases which would cause invalid machine
code to be emitted. It was not investigated whether it was pos-
sible to obtain enough control over the emitted code to produce
unintended but valid machine code instructions. This would likely
lead to an exploitable situation. The vulnerability was fixed with
git commit fb37d4711220140e3f24a6d34d4669fcb409da87.

CVE-2018-12386d In Spidermonkey, a bug in the register allocator which would result
in a register holding an unexpected value. This could be abused
to cause a type confusion when executing the generated machine
code, resulting in an exploitable condition. This vulnerability is
further discussed in section 6.3. The vulnerability was fixed with
git commit c0e48637d27b853d4a600b3c81d897b201421390.

ahttps://bugs.webkit.org/show bug.cgi?id=185328
bhttps://www.zerodayinitiative.com/advisories/ZDI-18-1081/
chttps://bugs.webkit.org/show bug.cgi?id=187451
dhttps://www.mozilla.org/en-US/security/advisories/mfsa2018-24/#CVE-2018-12386

Figure 6.1 Four vulnerabilities that were identified with the presented approach. All
vulnerabilities were initially discovered as assertion failures in a debug config-
uration of the software which were then manually analyzed.

https://bugs.webkit.org/show_bug.cgi?id=185328
https://www.zerodayinitiative.com/advisories/ZDI-18-1081/
https://bugs.webkit.org/show_bug.cgi?id=187451
https://www.mozilla.org/en-US/security/advisories/mfsa2018-24/#CVE-2018-12386
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6.3 Case Study: CVE-2018-12386

This section describes in more detail one of the identified vulnerabilities, CVE-2018-12386,
a bug in the register allocator in one of the JIT compilers inside Firefox. It serves as an
example of a vulnerability for which the initial sample resulted in a failed assertion in
debug builds but no observable misbehavior in release builds, and which was subsequently
manually modified to result in an exploitable condition.

The initial sample that triggered a failed assertion in debug builds is shown in list-
ing 6.1. Running this code in a debug build of the Spidermonkey engine resulted in
the following failed assertion: "Assertion failure: *def->output() != alloc, at

firefox/js/src/jit/RegisterAllocator.cpp:222". The vulnerability was analyzed by
a small team and an exploit was written for it. It was then presented at the hack2win
competition2, during which it was disclosed to Mozilla and then quickly fixed in Firefox
62.0.3.

1 function f ( ) {
2 function g ( ) {}
3 l e t p = Object ;
4 f o r ( ; p > 0 ; p = p + 0) {
5 f o r ( l e t i = 0 ; i < 0 ; ++i ) {
6 while (p === p) {}
7 }
8 while ( true ) {}
9 }

10 while ( true ) {}
11 }
12 f ( ) ;

Listing 6.1: The initial sample for CVE-2018-12386 which was found during fuzzing.

The vulnerability occurs due to a special combination of control and data flow caused by
the loops and essentially leads to a scenario in which the wrong value is stored in a register.
This can be abused to cause a type confusion by loading a value of type X into a register
that is expected to contain a value of type Y. Listing 6.2 demonstrates this. The code
triggers the register misallocation in such a way that after the third loop in the function,
the register that is expected to store parameter a now instead contains parameter b. The
following code compiles to a store of a double value to the first argument. However, due to
the register misallocation, it ends up writing a controlled double value (in this case the
double value represented by 0x414141414141) to an object containing a pointer at that
offset. As such, subsequent access to said property on the corrupted object leads to an
attacker-controlled crash. Confusing different types of objects, such as ArrayBuffer objects,
allows the construction of a memory read and write primitive. This in turn enables the
execution of arbitrary code by corrupting control flow data inside the process.

2https://blogs.securiteam.com/index.php/archives/3765

https://blogs.securiteam.com/index.php/archives/3765


6.4. Potential Improvements 43

1 // Generate objects with inline properties

2 f o r (var i = 0 ; i < 100 ; i++)
3 var o1 = { s : "foo" , x : 1 3 . 3 7} ;
4
5 f o r (var i = 0 ; i < 100 ; i++)
6 var o2 = { s : "foo" , y : {}} ;
7
8 function f ( a , b ) {
9 l e t p = b ;

10 f o r ( ; p . s < 0 ; p = p . s )
11 while (p === p) {}
12 f o r (var i = 0 ; i < 10000000; ++i ) {}
13 // Sets b.y to 0x414141414141 due to register misallocation

14 a . x = 3.54484805889626 e−310;
15 return a . x ;
16 }
17
18 f ( o1 , o2 ) ;
19 f ( o1 , o2 ) ;
20 f ( o1 , o2 ) ;
21 o2 . y ; // Crashes at 0x414141414141

Listing 6.2: Proof-of-concept exploit for CVE-2018-12386 demonstrating a type confusion.

6.4 Potential Improvements

While the presented system is successful in discovering faults in scripting engines, it
potentially has difficulties detecting specific types of vulnerabilities. In particular, callback
related issues such as the ones shown in section 2.3.1 can be hard to discover with coverage-
guided fuzzing. To understand why, it is necessary to look at the call stack during the
execution of an unexpected callback. An exemplary call stack of such a situation is shown
in figure 6.2. Here, the vulnerable function calls a helper function to perform a type
conversion which then eventually triggers the callback. This is a common pattern for this
type of vulnerability and is a problem for coverage guidance, as triggering the callback will
likely not result in additional edge coverage if the helper function has previously performed
the callback, as is likely the case for fundamental functions such as JSValue::toNumber.
As such, a sample that managed to trigger a callback during execution of the vulnerable
function would be discarded, preventing further mutations of it which could potentially
trigger the vulnerability. A common workaround for this sort of issue is to use aggressive
inlining during compilation of the target program: if the function that ultimately triggers
the callback, in this case JSValue::toNumber, is inlined in the vulnerable function, a new
control flow edge would be discovered when the callback is triggered and the sample would
be kept for future mutations. During testing, the engine under test has been compiled with
the second highest optimization level (-O3) which performs aggressive inlining. Observing
the corpus during execution has shown that the implementation is in fact able to discover
various situations in which a callback is triggered during execution of a builtin function
implemented in C++. However, thoroughly evaluating the impact of more aggressive
inlining remains the subject of future work.
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Figure 6.2 The call stack during the unexpected callback when triggering CVE-2016-4622
as described in section 2.3.1.

Similarly, vulnerabilities that require a non-trivial amount of additional logic to turn a
faulty condition into an observable crash or assertion failure, such as the vulnerability
described in section 2.3.2, can be hard to discover in an automatic fashion as well. With
CVE-2018-4233, the vulnerable condition would occur as soon as a proxy that intercepts
property loads was installed on a constructor function which was then JIT compiled.
However, to obtain an observable fault, it was further necessary to modify the type of
a function argument during an intercepted property load in a way that would lead to a
type confusion in the compiled code afterwards. One possibility to improve the chances
of detecting such issues is to instrument the engine to force a crash as soon as a faulty
condition is observed. As an example, it might be possible to add runtime checks to the
generated machine code that ensure that in fact no arbitrary JavaScript code has been
executed as result of an IR operation that was deemed side effect free. This remains subject
of future work as well.

Another weakness of the presented approach is that, due to the nature of coverage guided
fuzzing, it focuses more on control flow and less on data flow of the program under test.
As an example, integer overflow related issues can be hard to detect with this approach as
there is no feedback for different integer values. A common workaround in this case is to
include a list of ”dangerous” integers that commonly trigger overflows and to emit them
more frequently.
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While automatic discovery of vulnerabilities in software that parses binary formats has
been well studied, similar research for dynamic language interpreters is lacking. Further,
most systems for automatic vulnerability discovery in JavaScript engines are not publicly
available, as they are often either a source of revenue for the developer in the form of bug
bounty programs, or are developed internally by browser vendors as part of the secure
development life cycle [HL06] to improve the security of the product. Some of the research
that has been published will be discussed in this chapter. Existing approaches are divided
into ones based on static analysis, generative fuzzing approaches, as well as mutation based
fuzzing approaches.

A system to statically analyze code of the binding layer of a web browser has been designed
by Brown et al. [BNW+17]. In a browser, the binding layer makes it possible to access APIs
that are implemented in the browser’s native language, commonly C++, to be accessed
from JavaScript. This involves converting JavaScript types to native types in both ways.
The number of available APIs in a browser, commonly called Web APIs, has steadily grown
over time1. The presented approach statically checks for various predefined vulnerability
code patterns in the binding layer, such as for example unsafe type casts performed on
JavaScript values. While the approach presented in this work is based on dynamic analysis,
and is thus not directly comparable to a static analysis approach, it is more general, as it is
able to target the engine itself, the binding layer, as well as the functionality that is exposed
through the binding layer. This can be achieved by adjusting the coverage feedback, e.g.
by only measuring coverage for the component that should be targeted. Furthermore,
static analysis usually suffers from the fact that it can only detect vulnerabilities following
a predefined pattern while fuzz-testing approaches can potentially discover new types of
vulnerabilities.

There exist a number of generative fuzzers for JavaScript and in general web browsers.
These systems follow more or less strictly the general architecture described in section 2.4.1.
They are often targeted at the browser itself, thus generating HTML and CSS as well as code
to interact with various Web APIs, and less on the core JavaScript engine. One example of

1https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API
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such a fuzzer is Domato [Fra17], which has discovered a number of vulnerabilities across
different browsers. Another popular generative fuzzer that is specifically targeted towards
JavaScript engines is jsfunfuzz [Rud07]. It is able to cover a large part of JavaScript’s
language features and appears to be widely used. However, with generative approaches it
is generally non-trivial to generate semantically valid samples as well as interesting control
flow patterns, as it would often require some form of emulation of the code as well as
precise knowledge of the runtime environment. As such, try-catch constructs are often used,
which, however, influence the behavior of the tested engine. A different generative approach
was presented by Hodovan et al. [HK16]. Their approach is based on a graph-based
representation of the JavaScript environment which connects different language entities
in the graph through different types of edges such as property edges, prototype edges, or
return value edges. This graph is then used to produce semantically valid expressions with
a high probability.

While it is possible to mutate the textual representation of code, mutation-based approaches
have thus far been explored mostly on the abstract syntax tree (AST) of a program. An
example for such a system was presented by Holler et al. [HHZ12], who mutate the AST
of a program and replace nodes with compatible subtrees, called fragments, from other
programs. Similar work has been performed by e.g. Guo et al. [Guo17] who perform AST
mutations on JavaScript queries of the mongoDB database2. Vegallam et al. [VRHB16],
similarly mutate the AST through replacements of nodes with subtrees from other samples
or newly generated code. They further apply a guided fuzzing approach, however, they do
not use coverage as a metric but instead score samples based on factors such as execution
time and code complexity as measured by e.g. cyclomatic complexity [McC76]. This work
sets itself apart by applying mutations to a different representation of a program as well as
using coverage as a metric for a guided fuzzing approach.

2https://www.mongodb.com/

https://www.mongodb.com/
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This work introduced a new approach for automatically detecting security vulnerabilities
in JavaScript interpreters using coverage guided fuzzing. For that, three requirements
which the developed system had to meet were identified: first, it must be able to produce
syntactically valid programs at all times. Second, it must be based on mutations so that
guided fuzzing becomes possible. Third, it has to be able to generate semantically valid
programs in high numbers to avoid the need for try-catch constructs.

The presented approach satisfies all three requirements. It is based on mutational fuzzing,
however, instead of mutating syntactic structures of a program such as the abstract syntax
tree, a new intermediate language, FuzzIL, was developed and mutations were defined on it.
This makes it possible to more directly mutate the control and data flow of the program.
A FuzzIL program can then easily be converted to JavaScript which guarantees syntactical
correctness. By nature of a mutation-based approach, generated samples will often be
semantically valid if the initial program was valid as well. As such, semantical correctness
is achieved by discarding invalid programs: ones that either raise a runtime exception or
trigger a timeout. Lightweight type tracking has additionally been implemented to further
increase the correctness rate.

An initial implementation of the proposed system was able to discover multiple crashes
and assertion failures across the major JavaScript engines. A preliminary analysis of the
discoveries yielded four previously unknown and potentially exploitable vulnerabilities,
including an exploitable bug in the register allocator of the just-in-time compiler inside
Spidermonkey, the engine powering the Firefox web browser.

Throughout this work, room for future improvements has been identified. In particular,
the ability to include existing JavaScript code, e.g. from regression tests, in the initial
corpus is expected to improve the obtained results. Further, extending FuzzIL’s coverage of
JavaScript language features, for example by implementing asynchronous functions, should
be equally important. Moreover, additional mutation algorithms that specifically target
control flow could have a positive impact. An example of such would be a mutation that
wraps existing code into a control flow construct such as a loop or moves existing code
around between block borders.
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Valuable insight could also be gained from a thorough evaluation of the impact of various
parameters and configuration options used in the current implementation. These include
parameters for the number of mutations, the maximum size of the corpus or the minimal
number of mutations performed on a program. However, this will first require a definition
of completeness of a fuzzing session, as a change of parameter could result in slower
progression of the fuzzer but ultimately yield better results.

Another interesting topic of research is to evaluate whether coverage guidance on the
machine code emitted by JIT compilers could be useful. This could for example help to
discover vulnerabilities that only manifest for specific inputs to the compiled code. In the
meantime, it is possible to work around this by defining mutations that specifically call
existing functions with new inputs or changed environments.

Finally, an extensive evaluation across all major engines and with predefined conditions
should be performed once a more mature implementation is available.
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[Fra17] Fratrić, Ivan: Domato fuzzer. https://github.com/googleprojectzero/
domato, 2017. Accessed: 2018-10-28.

[GES+09] Gal, Andreas, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff et al.: Trace-based just-in-time type
specialization for dynamic languages. ACM Sigplan Notices, 44(6):465–478,
2009.

https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato


50 Bibliography

[GKL08] Godefroid, Patrice, Adam Kiezun and Michael Y Levin: Grammar-
based whitebox fuzzing. In ACM Sigplan Notices, volume 43, pages 206–215.
ACM, 2008.

[Guo17] Guo, Robert: MongoDB’s JavaScript fuzzer. Communications of the ACM,
60(5):43–47, 2017.

[HCU91] Hölzle, Urs, Craig Chambers and David Ungar: Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In European
Conference on Object-Oriented Programming, pages 21–38. Springer, 1991.

[HG12] Hackett, Brian and Shu-yu Guo: Fast and precise hybrid type inference
for JavaScript. ACM SIGPLAN Notices, 47(6):239–250, 2012.

[HHZ12] Holler, Christian, Kim Herzig and Andreas Zeller: Fuzzing with Code
Fragments. In USENIX Security Symposium, pages 445–458, 2012.

[HJ84] Halstead Jr, Robert H: Implementation of Multilisp: Lisp on a multipro-
cessor. In Proceedings of the 1984 ACM Symposium on LISP and functional
programming, pages 9–17. ACM, 1984.
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