
Don't Trust the PID!
Stories of a simple logic bug and where to find it

Samuel Groß (@5aelo)

https://twitter.com/5aelo

The PID (Process IDentifier)

• Used to identify a running process

• Incremented when spawning new process

• For historical reasons limited to < 100k*

!2

/usr/bin/whoami &
root
echo $!
52892

PIDsint pid = fork();
if (pid == 0) {
 return do_child();
} else if (pid < 0) {
 return -1;
}
printf("Child PID: %d\n", pid);

*on XNU at least, presumably it was originally stored in a 16-bit int

> ps
 PID TTY TIME
 828 ttys000 0:00.20
 830 ttys000 0:01.80
 7508 ttys001 0:00.02
15820 ttys001 0:00.20
15822 ttys001 0:00.89

PID Wraparound
• What happens after 100k processes have

been spawned?

• PID wraps around, next free PID is reused

• Try this at home:

!3

...
pid: 99994
pid: 99995
pid: 99996
pid: 99997
pid: 99998
pid: 103
pid: 104
pid: 106
pid: 109
...

while (1) {
 int pid = fork();
 if (pid <= 0) {
 break;
 } else {
 printf("pid: %d\n", pid);
 wait(NULL);
 }
}

😮
*

* not actually that surprising

A Vulnerability Pattern

!4

int pid = client->pid;
if (security_check(action, pid)) {
 perform_action(client);
}

Some local IPC service

A Vulnerability Pattern

!5

int pid = client->pid;
if (security_check(action, pid)) {
 perform_action(client);
}

Problem: no guarantee this is still the requesting process

A Vulnerability Pattern

!6

int pid = client->pid;
if (security_check(action, pid)) {
 perform_action(client);
}

• Race condition: client process terminates and somehow a
new, more privileged process is spawned into its PID

• Vulnerability comes in different "flavours"

• Sometimes conveniently exploitable if PID is cached

Example

!7

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

void Service::handleMessage(...)
{
 int pid = client->pid;
 if (security_check(action, pid)) {
 perform_action(client);
 }
}

Goal: get here

Example Attack

!8

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

void Service::acceptConnection(...)
{
 ...;
 Client* = new Client;
 client->pid = getRemotePid()
 ...;
}

1. Connect to service

Example Attack

!9

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

1. Connect to service

2. Transfer connection
state to another process

Saelo's 2nd Process
(unprivileged)

Pid: 1338

// Option 1: fork
int pid = fork();
if (pid = 0) {
 ...;

// Option 2: IPC
other_proc->send(conn);

Example Attack

!10

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

1. Connect to service

2. Transfer connection
state to another process

Saelo's 2nd Process
(unprivileged)

Pid: 1338

Some other Process
(privileged)
Pid: 1337

3. Terminate process and
have another process

reclaim its pid

// Wrap around PIDs
while (1) {
 int pid = fork();
 // ...
}

// Spawn privileged service, e.g.
// via IPC (on-demand spawning)
connect_to_priv_service();

Example Attack

!11

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

1. Connect to service

2. Transfer connection
state to another process

Saelo's 2nd Process
(unprivileged)

Pid: 1338

Some other Process
(privileged)
Pid: 1337

void Service::handleMessage(...)
{
 int pid = client->pid;
 if (security_check(action, pid)) {
 perform_action(client);
 }
}

4. Send request
From 2nd process

3. Terminate process and
have another process

reclaim its pid

Example Attack

!12

Saelo's Process
(unprivileged)

Pid: 1337

Some Service
(privileged)

1. Connect to service

2. Transfer connection
state to another process

Saelo's 2nd Process
(unprivileged)

Pid: 1338

Some other Process
(privileged)
Pid: 1337

void Service::handleMessage(...)
{
 int pid = client->pid;
 if (security_check(action, pid)) {
 perform_action(client);
 }
}

4. Send request
From 2nd process

Service performs
check on the

wrong process 😎

3. Terminate process and
have another process

reclaim its pid

Preconditions

• Usually need at least two controlled processes that can
communicate with each other

• Ability to spawn many (unprivileged) processes to wrap
around PIDs

• Ability to spawn at least one privileged process

!13

Agenda
1. Why does this happen?

• Overview: macOS userland security and sandboxing

2. How to do it correctly?

• The audit token

3. Where has this happened?

• authd and pwn2own 2017

• sandbox_check fundamentally broken

!14

"Classic" OS Design

!15

alice's process

Kernel

/home/bob/secrets.txt rw-rw----

open("/home/bob/secrets.txt", O_RDONLY)

???

???

Kernel manages all ressources

"Classic" OS Design

!16

/home/bob/secrets.txt rw-rw----

Compare request bits (r--) with
access bits for that user (---)

EACCESS!

alice's process

Kernel

Kernel manages all ressources

open("/home/bob/secrets.txt", O_RDONLY)

Userspace Resources?
Wanted: resource management in userspace

• Cloud documents, contacts, UI events, clipboard,
preferences, keychain, ... are all userspace "resources"

Benefits of managing things in userspace:

• Userspace code probably easier to write than kernel code

• Access to memory safe languages (e.g. Swift on macOS)

• Small, restricted services that can be sandboxed to only
have access to the resources they need

!17

Example: cfprefsd

!18

Saelo's process
cfprefsd

(Manages ~/Library/Preferences)

Goal: write/update a preference

(resource managed by cfprefsd)

Example: cfprefsd

!19

Saelo's process
cfprefsd

(Manages ~/Library/Preferences)

launchd

bootstrap_look_up("cfprefsd")

"OK, use IPC port 0x1234"

Example: cfprefsd

!20

Saelo's process
cfprefsd

(Manages ~/Library/Preferences)

launchd

pref_write("net.saelo.hax.foobar", "baz")

Done

Userspace Security, 1

• Services eventually need to do access checks

• cfprefsd shouldn't allow reading/writing other user's preferences

• So far simple: kernel can attach UID/GID etc. to IPC
messages and services can use those

!21

Adding Flexibility

Classic security model not flexible enough, might also want:

• Sandboxing, i.e. mechanism to restrict selected processes

• Entitlements, i.e. mechanism to empower selected processes

!22

!23

Saelo's process
(formerly WebContent)

~/mysecrets.txt
Sandbox

Kernel

!24

Saelo's process
(formerly WebContent)

XNU Sandbox.kext

~/mysecrets.txt
Sandbox

open("~/mysecrets.txt")

Kernel

!25

Saelo's process
(formerly WebContent)

XNU Sandbox.kext

~/mysecrets.txt
Sandbox

open("~/mysecrets.txt")

open allowed for this file?

Evaluates
sandbox profile

of requestor

MACF

Kernel

!26

Saelo's process
(formerly WebContent)

XNU Sandbox.kext

~/mysecrets.txt
Sandbox

open("~/mysecrets.txt")

open allowed for this file?

"Nope"
Evaluates

sandbox profile
of requestor

MACF

Kernel

!27

Saelo's process
(formerly WebContent)

XNU Sandbox.kext

~/mysecrets.txt
Sandbox

open("~/mysecrets.txt")

open allowed for this file?

"Nope"

EACCESS!

MACF

Userspace Security, 2

• Sandbox profile and entitlement information are required
by some userspace services to perform access checks

• cfprefsd shouldn't allow sandboxed processes to write preferences

• This data is associated with each process in the kernel

=> Must have API to obtain this information for a process

 => Intuitive (but bad) choice: query this data by PID

!28

!29

Saelo's process
(formerly WebContent)

Sandbox

cfprefsd

Goal: write/update a preference

Kernel

!30

Saelo's process
(formerly WebContent)

Sandbox

cfprefsd

launchd

bootstrap_look_up("cfprefsd")

Sandbox.kext

sandbox_check("lookup", "cfprefsd")

OK

OK, 0x1234

Kernel

!31

Saelo's process
(formerly WebContent)

Sandbox

cfprefsd

NO

pref_write("foo.bar", "baz")

sandbox_check("user-preference-write")

NO

Sandbox.kext

Userspace Security, 3

Potential problem now:

Access-control data can be obtained via a PID

 => Can lead to PID reuse issues and unsafe checks

!32

How to do it correctly
The audit_token_t in XNU

The Basic Fix
• Simple: use a bigger, ideally unique PID instead

• In XNU: audit_token_t

• Structure attached to IPC messages (mach messages)

• Obtain via e.g. xpc_dictionary_get_audit_token

• Usual fix for PID related issues: use audit token instead

!34

From apple's dev forum: "The OS’s process ID space is relatively small, which means that
process IDs are commonly reused. Thus, it’s a bad idea to use a process ID in security-

related work. There is a recommended alternative to process IDs, namely audit tokens, ..."

https://forums.developer.apple.com/thread/72881

!35

audit_token.val[0] = my_cred->cr_audit.as_aia_p->ai_auid;
audit_token.val[1] = my_pcred->cr_uid;
audit_token.val[2] = my_pcred->cr_gid;
audit_token.val[3] = my_pcred->cr_ruid;
audit_token.val[4] = my_pcred->cr_rgid;
audit_token.val[5] = p->p_pid;
audit_token.val[6] = my_cred->cr_audit.as_aia_p->ai_asid;
audit_token.val[7] = p->p_idversion;

typedef struct {
 unsigned int val[8];

} audit_token_t;

• Opaque structure

• Contains p_idversion, essentially a 32-bit PID

• Initialized in set_security_token_task_internal:

Pwn2Own '17, authd

Pwn2Own 2017
Participated together with @_niklasb

Context:

• Had Safari renderer bugs

• Niklas had a TOCTOU user -> root escalation in
diskarbitrationd (CVE-2017-2533)

• But: couldn't reach it from the sandbox as it required
the "system.volume.internal.mount" authorization

=> I started looking into authd for vulnerabilities

!37

https://twitter.com/_niklasb

authd

• Authorization system for userspace policy enforcement

• Predates entitlement system and seems somewhat
deprecated now (?)

• Service responsible for issuing "authorizations"

• Idea: rule system to determine whether process could
obtain an authorization

!38

!39

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

!40

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator PID Creator UID

!41

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

2. Send back external
form: AKELCJS1C...

Token Database
External Form Creator PID Creator UID

AKELCJS1C... 1337 501

!42

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

3. Send request and
externalized token to service

2. Send back external
form: AKELCJS1C...

Token Database
External Form Creator PID Creator UID

AKELCJS1C... 1337 501

!43

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

3. Send request and
externalized token to service

4. Validate token and ensure it is
usable for requested action

2. Send back external
form: AKELCJS1C...

Token Database
External Form Creator PID Creator UID

AKELCJS1C... 1337 501

!44

Saelo's process
(Authorization Creator)

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

3. Send request and
externalized token to service

4. Validate token and ensure it is
usable for requested action

6. Perform action

2. Send back external
form: AKELCJS1C...

5. OK

Token Database
External Form Creator PID Creator UID

AKELCJS1C... 1337 501

!45

> security authorizationdb read system.volume.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>class</key>
 <string>rule</string>
 <key>comment</key>
 <string>system.volume.(external|internal|removable).
(adopt|encode|mount|rename|unmount)</string>
 <key>created</key>
 <real>455638795.69457</real>
 <key>k-of-n</key>
 <integer>1</integer>
 <key>modified</key>
 <real>455638795.69457</real>
 <key>rule</key>
 <array>
 <string>is-root</string>
 <string>is-admin</string>
 <string>authenticate-admin-30</string>
 </array>
 <key>version</key>
 <integer>0</integer>
</dict>
</plist>

From WebContent

Safari renderer runs as current user

 => is-admin rule is fulfilled

But, trying to obtain the right from within the renderer fails

!46

🤔

!47

static bool _verify_sandbox(engine_t engine, const char * right)
{
 pid_t pid = process_get_pid(engine->proc);
 if (sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 pid = auth_token_get_pid(engine->auth);
 if (auth_token_get_sandboxed(engine->auth) &&
 sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 return true;
}

authd source code before march 2017

Sandbox!

• Problem: authd only grants authorizations to non-
sandboxed processes

• Authorization issuer as well as consumer must not be
sandboxed

• Or have the following in their sandbox profile:
(allow authorization-right-obtain (right-name
"system.volume.internal.mount"))

!48

!49

static bool _verify_sandbox(engine_t engine, const char * right)
{
 pid_t pid = process_get_pid(engine->proc);
 if (sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 pid = auth_token_get_pid(engine->auth);
 if (auth_token_get_sandboxed(engine->auth) &&
 sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 return true;
}

!50

static bool _verify_sandbox(engine_t engine, const char * right)
{
 pid_t pid = process_get_pid(engine->proc);
 if (sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 pid = auth_token_get_pid(engine->auth);
 if (auth_token_get_sandboxed(engine->auth) &&
 sandbox_check(pid, "authorization-right-obtain", right))
{
 LOGE("Sandbox denied authorizing right, ...");
 return false;
 }

 return true;
}

Problem: pid is taken from
datastructure created when client
first connected

=> can reuse PID! (CVE-2017-2535)

!51

WebContent
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

Helper process

!52

WebContent
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

Helper process

!53

WebContent
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

3. Forward token to
helper

Helper process

!54

WebContent (dead)
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

Helper process

3. Forward token to
helper

Some Privileged Service
Pid: 1337 4. Exit and reuse PID

!55

WebContent (dead)
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

Helper process

3. Forward token to
helper

Some Privileged Service
Pid: 1337

5. Send request and
externalized token to service

4. Exit and reuse PID

!56

WebContent (dead)
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

6. Validate token and ensure it is
usable for requested action

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

("is-root" || "is-admin") &&
!sandboxed(creator && consumer)

Helper process

3. Forward token to
helper

Some Privileged Service
Pid: 1337

5. Send request and
externalized token to service

4. Exit and reuse PID

!57

WebContent (dead)
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

7. "OK!"

("is-root" || "is-admin") &&
!sandboxed(creator && consumer)

Helper process

3. Forward token to
helper

Some Privileged Service
Pid: 1337

5. Send request and
externalized token to service

4. Exit and reuse PID

6. Validate token and ensure it is
usable for requested action

!58

WebContent (dead)
(Authorization Creator)

Pid: 1337

authd

Service
(Authorization Consumer)

1. Create an authorization
token and externalize it

8. Perform action

Token Database
External Form Creator Pid Creator UID

AKELCJS1C... 1337 501

2. Send back external
form: AKELCJS1C...

7. "OK!"

("is-root" || "is-admin") &&
!sandboxed(creator && consumer)

Helper process

3. Forward token to
helper

Some Privileged Service
Pid: 1337

5. Send request and
externalized token to service

4. Exit and reuse PID

6. Validate token and ensure it is
usable for requested action

👻

Final Exploit

• In our chain: helper process was speechsynthesisd which
was allowed to fork and would load arbitrary .dylibs from
a WebContent writable dir (CVE-2017-2534 by Niklas)

• Needed to crash a privileged service so it restarts and
reclaims the PID => simple nullptr deref in nsurlstoraged

• Exploit implementation by Niklas: https://github.com/
phoenhex/files/tree/master/exploits/safari-sbx

!59

https://github.com/phoenhex/files/tree/master/exploits/safari-sbx
https://github.com/phoenhex/files/tree/master/exploits/safari-sbx

The Generic Issue
sandbox_check fundamentally broken

Race Conditions!

• Even if PID is not cached by the server, any security
check that only uses the PID will likely still be insecure!

• Reason: there is a time window between sending the
request in the client and handling the request in the server

 => Client can exit and another process can reclaim its PID

• Example: sandbox_check on macOS/iOS

!61

sandbox_check

Darwin userland sandbox checking comes in two flavours:

• sandbox_check_by_audit_token

• sandbox_check(pid, ACTION)

!62

This can't be safe...

CVEs ...

• Thought about presenting the Pwn2Own bug sometime

• Knew about sandbox_check weakness, figured I'd
report it before talking about the Pwn2Own bug

• Not crazy serious, e.g. launchd always uses audit token

 => Wrote a half-hearted report in late 2017

 ...

!63

!64

curl -s https://support.apple.com/en-us/HT208692 \
 https://support.apple.com/en-us/HT208693 \
 | grep 5aelo | sort -u | wc -l

>>> 9 <<<

🤩😳 =>

About the security content of macOS 10.13.4

About the security content of iOS 11.3

* Essentially apple assigned a CVE for every vulnerable service they found

Easy Exploit?

Problem: if the client dies, how can we receive a reply?

Solution: transfer mach IPC endpoint to other process!

!65

Mach Messages

• Mach is the microkernel inside XNU

• Mach messages are the core IPC mechanism in Darwin

• Many other IPC mechanisms built on top, notably XPC

• Topic of many presentations, blog posts, etc.

• Unidirectional, relies on mach ports as endpoints

• Cool feature: ports can be transferred to other processes!

!66

!67

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

The Final Attack

!68

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

Needs either (allow process-fork) or some
patience while crashing and respawning IPC services ;)

Preparation:
PIDs are wrapped
around so next free
PID is just before 1337

!69

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

1. Enqueue message for service

// Spam messages so the queue fills up
for (int i = 0; i < 10000; i++) {
 xpc_connection_send_message(conn, msg);
}

!70

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

1. Enqueue message for service

2. Transfer mach ports to 2nd process
struct {
 mach_msg_header_t header;
 mach_msg_body_t body;
 mach_msg_port_descriptor_t sp;
 mach_msg_port_descriptor_t rp;
} m;
...;
m.rp.disposition = MACH_MSG_TYPE_MOVE_RECEIVE;
m.rp.name = conn->receive_port;
m.sp.disposition = MACH_MSG_TYPE_MOVE_SEND;
m.sp.name = conn->send_port;
mach_msg(&m.header, MACH_SEND_MSG, ...);

!71

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

1. Enqueue message for service

2. Transfer mach ports to 2nd process

Privileged process
(unsandboxed)

Pid: 1337

3. First process dies and some
unsandboxed process (spawned by
the other process) reclaims its PID

!72

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

1. Enqueue message for service

2. Transfer mach ports to 2nd process

Privileged process
(unsandboxed)

Pid: 1337

int pid = xpc_connection_get_pid(conn);
if (sandbox_check(pid, ACTION) == 0) {
 do_action_and_send_reply(msg);
}

4. Message arrived, is
processed by service

3. First process dies and some
unsandboxed process (spawned by
the other process) reclaims its PID

!73

saelo's 1st process
(sandboxed)

Pid: 1337

Privileged Service

saelo's 2nd process
(sandboxed)

1. Enqueue message for service

2. Transfer mach ports to 2nd process

Privileged process
(unsandboxed)

Pid: 1337

4. Message arrived, is
processed by service

5. Perform privileged action and
send reply to 2nd process

🎉

3. First process dies and some
unsandboxed process (spawned by
the other process) reclaims its PID

Summary

Don't use the PID for security checks :)

!74

References
Our writeup for the Pwn2Own '17 chain:

• https://phoenhex.re/2017-07-06/pwn2own-sandbox-
escape#performing-the-right-check-on-the-wrong-process

Similar bugs discovered by Project Zero in 2017:

• macOS userland entitlement checks: https://bugs.chromium.org/
p/project-zero/issues/detail?id=1223

• Android KeyStore: https://bugs.chromium.org/p/project-zero/
issues/detail?id=1406

Probably more... ?

!75

https://phoenhex.re/2017-07-06/pwn2own-sandbox-escape#performing-the-right-check-on-the-wrong-process
https://phoenhex.re/2017-07-06/pwn2own-sandbox-escape#performing-the-right-check-on-the-wrong-process
https://bugs.chromium.org/p/project-zero/issues/detail?id=1223
https://bugs.chromium.org/p/project-zero/issues/detail?id=1223
https://bugs.chromium.org/p/project-zero/issues/detail?id=1406
https://bugs.chromium.org/p/project-zero/issues/detail?id=1406
https://bugs.chromium.org/p/project-zero/issues/detail?id=1406

